Symbiotic bacteria mediate chemical-insecticide resistance but enhance the efficacy of a biological insecticide in diamondback moth.

IF 7.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-09-22 Epub Date: 2025-08-29 DOI:10.1016/j.cub.2025.08.004
Lu Li, Qiong Yang, Meixi Liu, Shuyan Lin, Wenjuan Hua, Dandan Shi, Juncheng Yan, Xueyan Shi, Ary A Hoffmann, Bin Zhu, Pei Liang
{"title":"Symbiotic bacteria mediate chemical-insecticide resistance but enhance the efficacy of a biological insecticide in diamondback moth.","authors":"Lu Li, Qiong Yang, Meixi Liu, Shuyan Lin, Wenjuan Hua, Dandan Shi, Juncheng Yan, Xueyan Shi, Ary A Hoffmann, Bin Zhu, Pei Liang","doi":"10.1016/j.cub.2025.08.004","DOIUrl":null,"url":null,"abstract":"<p><p>Insecticide resistance has been a major challenge for pest management worldwide. Here, we investigated how gut symbiotic bacteria in insects might affect resistance to chemical (organophosphate) and biological (Bacillus thuringiensis) insecticides in different ways to create opportunities for strategic pesticide rotations. Using the diamondback moth (Plutella xylostella) as the target pest, we demonstrated that long-term exposure to chlorpyrifos (an organophosphate insecticide) promotes the proliferation of the gut symbiont Enterococcus mundtii in P. xylostella populations, resulting in chlorpyrifos resistance in field populations across China that correlates closely with the abundance of this bacterium. Metabolic analysis revealed that E. mundtii can directly metabolize chlorpyrifos via a conserved cytochrome P450 enzyme in the genus Enterococcus. However, the accumulation of E. mundtii in the gut of chlorpyrifos-resistant populations may increase their susceptibility to Bacillus thuringiensis toxins, resulting in the increased efficacy of Bacillus thuringiensis in populations with high chemical insecticide resistance. The gut barrier disruption caused by Bacillus thuringiensis promotes invasion of E. mundtii from the gut into the hemolymph, leading to death by septicemia to enhance susceptibility. The study highlights an interaction between resistance to chemically synthesized and biological insecticides mediated by gut symbiotic bacteria and suggests a control strategy involving chemical/biological pesticide rotations that may apply to other cases of resistance to chemically synthesized insecticides.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"4494-4508.e3"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.08.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insecticide resistance has been a major challenge for pest management worldwide. Here, we investigated how gut symbiotic bacteria in insects might affect resistance to chemical (organophosphate) and biological (Bacillus thuringiensis) insecticides in different ways to create opportunities for strategic pesticide rotations. Using the diamondback moth (Plutella xylostella) as the target pest, we demonstrated that long-term exposure to chlorpyrifos (an organophosphate insecticide) promotes the proliferation of the gut symbiont Enterococcus mundtii in P. xylostella populations, resulting in chlorpyrifos resistance in field populations across China that correlates closely with the abundance of this bacterium. Metabolic analysis revealed that E. mundtii can directly metabolize chlorpyrifos via a conserved cytochrome P450 enzyme in the genus Enterococcus. However, the accumulation of E. mundtii in the gut of chlorpyrifos-resistant populations may increase their susceptibility to Bacillus thuringiensis toxins, resulting in the increased efficacy of Bacillus thuringiensis in populations with high chemical insecticide resistance. The gut barrier disruption caused by Bacillus thuringiensis promotes invasion of E. mundtii from the gut into the hemolymph, leading to death by septicemia to enhance susceptibility. The study highlights an interaction between resistance to chemically synthesized and biological insecticides mediated by gut symbiotic bacteria and suggests a control strategy involving chemical/biological pesticide rotations that may apply to other cases of resistance to chemically synthesized insecticides.

共生菌介导了小菜蛾对化学杀虫剂的抗性,但增强了生物杀虫剂的药效。
杀虫剂抗药性一直是全世界病虫害管理面临的主要挑战。在这里,我们研究了昆虫肠道共生细菌如何以不同的方式影响对化学(有机磷)和生物(苏云金芽孢杆菌)杀虫剂的抗性,以创造战略农药轮作的机会。以小菜蛾(Plutella xylostella)为目标害虫,我们证明了长期暴露于毒死蜱(一种有机磷杀虫剂)会促进小菜蛾种群肠道共生体蒙氏肠球菌(Enterococcus mundtii)的增殖,导致中国各地野外种群对毒死蜱的抗性,这与该细菌的丰度密切相关。代谢分析表明,蒙地绦虫可以通过肠球菌属中一个保守的细胞色素P450酶直接代谢毒死蜱。然而,孟氏芽孢杆菌在抗毒死蜱种群肠道内的积累可能会增加其对苏云金芽孢杆菌毒素的敏感性,从而导致苏云金芽孢杆菌在化学杀虫剂高抗性种群中的药效增加。苏云金芽孢杆菌引起的肠道屏障破坏促进蒙氏杆菌从肠道侵入血淋巴,导致败血症死亡,从而增强易感性。该研究强调了肠道共生细菌介导的对化学合成杀虫剂和生物杀虫剂的抗性之间的相互作用,并提出了一种涉及化学/生物农药轮作的控制策略,该策略可能适用于对化学合成杀虫剂的其他抗性病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信