Corrections in single-cell migration path in vivo are controlled by pulses in polar Rac1 activation.

IF 7.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-09-22 Epub Date: 2025-08-20 DOI:10.1016/j.cub.2025.07.063
Dennis Hoffmann, Tal Agranov, Lucas Kühl, Laura Ermlich, Michal Reichman-Fried, Benjamin D Simons, Nir S Gov, Erez Raz
{"title":"Corrections in single-cell migration path in vivo are controlled by pulses in polar Rac1 activation.","authors":"Dennis Hoffmann, Tal Agranov, Lucas Kühl, Laura Ermlich, Michal Reichman-Fried, Benjamin D Simons, Nir S Gov, Erez Raz","doi":"10.1016/j.cub.2025.07.063","DOIUrl":null,"url":null,"abstract":"<p><p>Directed migration of single cells is central to a large number of processes in development and adult life. Corrections to the migration path of cells are often characterized by periodic loss of polarity that is followed by the generation of a new leading edge in response to guidance cues, a behavior termed \"run and tumble.\" While this phenomenon is essential for accurate arrival at migration targets, the precise molecular mechanisms responsible for the periodic changes in cell polarity are unknown. To investigate this issue, we employ germ cells in live zebrafish embryos as an in vivo model and show that a tunable molecular network controls periodic pulsations of Rac1 activity and actin polymerization. This process, which we term \"polar pulsations,\" is responsible for the transitions between the run and tumble phases. In addition, we provide evidence for the role of apolar blebbing activity during tumble phases in erasing the memory of the previous front-back polarity of the migrating cell. To understand how the molecular components give rise to this distinct behavior, we develop a minimal mathematical model of the biochemical network that accounts for the observed cell behavior. Together, our in vivo findings and the mathematical model suggest that a pulsatory signaling network regulates the accuracy of individual cell migration.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"4365-4382.e8"},"PeriodicalIF":7.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.07.063","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Directed migration of single cells is central to a large number of processes in development and adult life. Corrections to the migration path of cells are often characterized by periodic loss of polarity that is followed by the generation of a new leading edge in response to guidance cues, a behavior termed "run and tumble." While this phenomenon is essential for accurate arrival at migration targets, the precise molecular mechanisms responsible for the periodic changes in cell polarity are unknown. To investigate this issue, we employ germ cells in live zebrafish embryos as an in vivo model and show that a tunable molecular network controls periodic pulsations of Rac1 activity and actin polymerization. This process, which we term "polar pulsations," is responsible for the transitions between the run and tumble phases. In addition, we provide evidence for the role of apolar blebbing activity during tumble phases in erasing the memory of the previous front-back polarity of the migrating cell. To understand how the molecular components give rise to this distinct behavior, we develop a minimal mathematical model of the biochemical network that accounts for the observed cell behavior. Together, our in vivo findings and the mathematical model suggest that a pulsatory signaling network regulates the accuracy of individual cell migration.

体内单细胞迁移路径的修正是由极性Rac1激活的脉冲控制的。
单细胞的定向迁移是发育和成人生活中许多过程的核心。细胞迁移路径的修正通常以周期性极性丧失为特征,随后会根据引导线索产生新的前沿,这种行为被称为“奔跑和翻滚”。虽然这种现象对于准确到达迁移目标至关重要,但导致细胞极性周期性变化的精确分子机制尚不清楚。为了研究这个问题,我们使用活斑马鱼胚胎中的生殖细胞作为体内模型,并表明一个可调节的分子网络控制着Rac1活性和肌动蛋白聚合的周期性脉动。这个过程,我们称之为“极地脉动”,负责在运行和翻滚阶段之间的转换。此外,我们还提供了证据,证明翻滚阶段的极性气泡活动在消除迁移细胞之前的前后极性记忆中的作用。为了理解分子成分如何产生这种独特的行为,我们开发了一个生物化学网络的最小数学模型,该模型解释了观察到的细胞行为。总之,我们的体内研究结果和数学模型表明,脉动信号网络调节单个细胞迁移的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信