{"title":"Neratinib-loaded solid lipid nanoparticles in dissolvable microneedles for enhanced transdermal breast cancer therapy.","authors":"Saraisam Kishor Kumar Singha, Venkatesh Dinnekere Puttegowda, Yousef Al-Ebini, Mohamed Rahamathulla, Joysa Ruby Joseph, Ajay Pankajbhai Lunagariya, Mohammed Jafar, Syeda Ayesha Farhana, Manjunatha Panduranga Mudughal, Gowdru Vishwanath Nahusha, Mohammed Muqtader Ahmed","doi":"10.1007/s13346-025-01962-1","DOIUrl":null,"url":null,"abstract":"<p><p>Neratinib, an FDA-approved drug for breast cancer, faces challenges such as poor solubility, limited permeability, and adverse side effects. To address these issues, we developed dissolving microneedles incorporating Neratinib-loaded solid lipid nanoparticles (SLNs) to enhance transdermal delivery and minimize systemic toxicity. SLNs were formulated via hot homogenization using glyceryl monostearate as the lipid matrix and were evaluated for particle size, drug entrapment efficiency, drug loading, and stability. The optimized formulation (F7) exhibited a particle size of 209.4 nm and 87.57% entrapment efficiency. SLNs were integrated into microneedles using a micro-molding technique. Characterization included IR spectroscopy, scanning electron microscopy, mechanical strength, and insertion ability. Ex vivo studies on porcine skin demonstrated 80.71 ± 1.43% cumulative drug release over 24 h, confirming effective skin penetration. In vitro cytotoxicity on MCF-7 breast cancer cells showed greater efficacy of the SLN formulation over free Neratinib, with lower IC50 values (55.965 vs. 66.568 µg/mL), indicating enhanced cellular uptake and sustained release. The findings support dissolvable microneedles loaded with Neratinib-SLNs as a promising transdermal approach for targeted breast cancer therapy, offering improved bioavailability, reduced side effects, and better patient compliance.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01962-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Neratinib, an FDA-approved drug for breast cancer, faces challenges such as poor solubility, limited permeability, and adverse side effects. To address these issues, we developed dissolving microneedles incorporating Neratinib-loaded solid lipid nanoparticles (SLNs) to enhance transdermal delivery and minimize systemic toxicity. SLNs were formulated via hot homogenization using glyceryl monostearate as the lipid matrix and were evaluated for particle size, drug entrapment efficiency, drug loading, and stability. The optimized formulation (F7) exhibited a particle size of 209.4 nm and 87.57% entrapment efficiency. SLNs were integrated into microneedles using a micro-molding technique. Characterization included IR spectroscopy, scanning electron microscopy, mechanical strength, and insertion ability. Ex vivo studies on porcine skin demonstrated 80.71 ± 1.43% cumulative drug release over 24 h, confirming effective skin penetration. In vitro cytotoxicity on MCF-7 breast cancer cells showed greater efficacy of the SLN formulation over free Neratinib, with lower IC50 values (55.965 vs. 66.568 µg/mL), indicating enhanced cellular uptake and sustained release. The findings support dissolvable microneedles loaded with Neratinib-SLNs as a promising transdermal approach for targeted breast cancer therapy, offering improved bioavailability, reduced side effects, and better patient compliance.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.