Construction and Verification of a Predictive Nomogram for Overall Survival in Patients with Large Retroperitoneal Liposarcoma: A Population-Based Cohort Study.
Huan Deng, Zhenhua Lu, Yajie Wang, Lin Xiao, Yisheng Pan
{"title":"Construction and Verification of a Predictive Nomogram for Overall Survival in Patients with Large Retroperitoneal Liposarcoma: A Population-Based Cohort Study.","authors":"Huan Deng, Zhenhua Lu, Yajie Wang, Lin Xiao, Yisheng Pan","doi":"10.3390/curroncol32080473","DOIUrl":null,"url":null,"abstract":"<p><p>Objective This study aimed to show the clinicopathological characteristics of large retroperitoneal liposarcoma (RLS) and to develop a customized nomogram model for patients with large RLS. Methods A total of 1735 patients diagnosed with RLS were selected from the public SEER database. Among them, 1113 patients with a maximum tumor diameter greater than 150 mm were included for further analysis. Nomogram models were developed based on Lasso and multivariate Cox regression analyses. A total of 166 patients that presented in the same period at our institution were used for external validations. Results A larger tumor size in RLS was associated with worse survival outcomes. Lasso and Cox regression analyses consistently identified age, TNM stage, occurrence pattern, histology, and surgery as important prognostic factors for OS. The constructed model demonstrated robust predictive performance, with better time-ROC (time-dependent receiver operating characteristic) for 1-year (83.1%), 3-year (83.8%), and 5-year (81.4%) survival in the training cohort. The concordance index (C-index) was approximately 0.80 in both the training and validation cohorts, reflecting excellent discriminatory ability of the model. Survival risk stratification analysis revealed significant differences in survival outcomes of large RLS (HR = 4.12 [3.31-5.12], <i>p</i> < 0.001, in the training cohort). Decision curve analysis (DCA) confirmed that the nomogram provided greater net benefits across a range of threshold probabilities. Conclusion This study identified important prognostic factors for survival in patients with large RLS and developed a reliable nomogram for predicting OS. The model's strong predictive performance supports its use in personalized treatment strategies, improving prognosis assessment and clinical decision making for these patients.</p>","PeriodicalId":11012,"journal":{"name":"Current oncology","volume":"32 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/curroncol32080473","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective This study aimed to show the clinicopathological characteristics of large retroperitoneal liposarcoma (RLS) and to develop a customized nomogram model for patients with large RLS. Methods A total of 1735 patients diagnosed with RLS were selected from the public SEER database. Among them, 1113 patients with a maximum tumor diameter greater than 150 mm were included for further analysis. Nomogram models were developed based on Lasso and multivariate Cox regression analyses. A total of 166 patients that presented in the same period at our institution were used for external validations. Results A larger tumor size in RLS was associated with worse survival outcomes. Lasso and Cox regression analyses consistently identified age, TNM stage, occurrence pattern, histology, and surgery as important prognostic factors for OS. The constructed model demonstrated robust predictive performance, with better time-ROC (time-dependent receiver operating characteristic) for 1-year (83.1%), 3-year (83.8%), and 5-year (81.4%) survival in the training cohort. The concordance index (C-index) was approximately 0.80 in both the training and validation cohorts, reflecting excellent discriminatory ability of the model. Survival risk stratification analysis revealed significant differences in survival outcomes of large RLS (HR = 4.12 [3.31-5.12], p < 0.001, in the training cohort). Decision curve analysis (DCA) confirmed that the nomogram provided greater net benefits across a range of threshold probabilities. Conclusion This study identified important prognostic factors for survival in patients with large RLS and developed a reliable nomogram for predicting OS. The model's strong predictive performance supports its use in personalized treatment strategies, improving prognosis assessment and clinical decision making for these patients.
期刊介绍:
Current Oncology is a peer-reviewed, Canadian-based and internationally respected journal. Current Oncology represents a multidisciplinary medium encompassing health care workers in the field of cancer therapy in Canada to report upon and to review progress in the management of this disease.
We encourage submissions from all fields of cancer medicine, including radiation oncology, surgical oncology, medical oncology, pediatric oncology, pathology, and cancer rehabilitation and survivorship. Articles published in the journal typically contain information that is relevant directly to clinical oncology practice, and have clear potential for application to the current or future practice of cancer medicine.