Unexpected compound reformation in the dense selenium-hydrogen system.

IF 9.6 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Communications Materials Pub Date : 2025-01-01 Epub Date: 2025-08-21 DOI:10.1038/s43246-025-00899-9
Huixin Hu, Mikhail A Kuzovnikov, Hannah A Shuttleworth, Tomas Marqueño, Jinwei Yan, Israel Osmond, Federico A Gorelli, Eugene Gregoryanz, Philip Dalladay-Simpson, Graeme J Ackland, Miriam Peña-Alvarez, Ross T Howie
{"title":"Unexpected compound reformation in the dense selenium-hydrogen system.","authors":"Huixin Hu, Mikhail A Kuzovnikov, Hannah A Shuttleworth, Tomas Marqueño, Jinwei Yan, Israel Osmond, Federico A Gorelli, Eugene Gregoryanz, Philip Dalladay-Simpson, Graeme J Ackland, Miriam Peña-Alvarez, Ross T Howie","doi":"10.1038/s43246-025-00899-9","DOIUrl":null,"url":null,"abstract":"<p><p>The H<sub>2</sub>Se molecule and the van der Waals compound (H<sub>2</sub>Se)<sub>2</sub>H<sub>2</sub> are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH<sub>2</sub>(H<sub>2</sub>)<sub>2</sub> at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (<i>I</i>4<sub>1</sub>/<i>a</i> <i>m</i> <i>d</i>) structure with density functional theory calculations finding a small distortion due to the orientation of H<sub>2</sub> molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H<sub>2</sub> molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH<sub>2</sub>(H<sub>2</sub>)<sub>2</sub> is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"193"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00899-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The H2Se molecule and the van der Waals compound (H2Se)2H2 are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH2(H2)2 at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (I41/a m d) structure with density functional theory calculations finding a small distortion due to the orientation of H2 molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H2 molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH2(H2)2 is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.

Abstract Image

Abstract Image

Abstract Image

密集硒-氢体系中意外的化合物重整。
H2Se分子和van der Waals化合物(H2Se)2H2在室温压缩下都是不稳定的,在22gpa以上解离成它们的组成元素。通过一系列高压-高温金刚石砧细胞实验,我们报告了一种新的化合物SeH2(H2)2在高于94 GPa的压力下意外形成。x射线衍射显示金属亚晶格采用四边形(I41/a m d)结构,密度泛函理论计算发现H2分子的取向造成了较小的畸变。该结构包括一个锯齿形的H-Se链网络,其准分子H2分子单元位于棱柱形的Se间隙中。电阻测量表明,在148 GPa的压力下,SeH2(H2)2是非金属的。在165 GPa和2000 K的压力下,Te-H体系没有形成化合物。综合结果表明,每个氢化氢的高压相行为是独特的,比以前认为的更复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信