Huixin Hu, Mikhail A Kuzovnikov, Hannah A Shuttleworth, Tomas Marqueño, Jinwei Yan, Israel Osmond, Federico A Gorelli, Eugene Gregoryanz, Philip Dalladay-Simpson, Graeme J Ackland, Miriam Peña-Alvarez, Ross T Howie
{"title":"Unexpected compound reformation in the dense selenium-hydrogen system.","authors":"Huixin Hu, Mikhail A Kuzovnikov, Hannah A Shuttleworth, Tomas Marqueño, Jinwei Yan, Israel Osmond, Federico A Gorelli, Eugene Gregoryanz, Philip Dalladay-Simpson, Graeme J Ackland, Miriam Peña-Alvarez, Ross T Howie","doi":"10.1038/s43246-025-00899-9","DOIUrl":null,"url":null,"abstract":"<p><p>The H<sub>2</sub>Se molecule and the van der Waals compound (H<sub>2</sub>Se)<sub>2</sub>H<sub>2</sub> are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH<sub>2</sub>(H<sub>2</sub>)<sub>2</sub> at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (<i>I</i>4<sub>1</sub>/<i>a</i> <i>m</i> <i>d</i>) structure with density functional theory calculations finding a small distortion due to the orientation of H<sub>2</sub> molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H<sub>2</sub> molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH<sub>2</sub>(H<sub>2</sub>)<sub>2</sub> is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"193"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00899-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The H2Se molecule and the van der Waals compound (H2Se)2H2 are both unstable upon room temperature compression, dissociating into their constituent elements above 22 GPa. Through a series of high pressure-high temperature diamond anvil cell experiments, we report the unexpected formation of a novel compound, SeH2(H2)2 at pressures above 94 GPa. X-ray diffraction reveals the metallic sublattice to adopt a tetragonal (I41/amd) structure with density functional theory calculations finding a small distortion due to the orientation of H2 molecules. The structure comprises of a network of zig-zag H-Se chains with quasi-molecular H2 molecular units hosted in the prismatic Se interstices. Electrical resistance measurements demonstrate that SeH2(H2)2 is non-metallic up to pressures of 148 GPa. Investigations into the Te-H system up to pressures of 165 GPa and 2000 K yielded no compound formation. The combined results suggest that the high pressure phase behavior of each chalcogen hydride is unique and more complex than previously thought.
H2Se分子和van der Waals化合物(H2Se)2H2在室温压缩下都是不稳定的,在22gpa以上解离成它们的组成元素。通过一系列高压-高温金刚石砧细胞实验,我们报告了一种新的化合物SeH2(H2)2在高于94 GPa的压力下意外形成。x射线衍射显示金属亚晶格采用四边形(I41/a m d)结构,密度泛函理论计算发现H2分子的取向造成了较小的畸变。该结构包括一个锯齿形的H-Se链网络,其准分子H2分子单元位于棱柱形的Se间隙中。电阻测量表明,在148 GPa的压力下,SeH2(H2)2是非金属的。在165 GPa和2000 K的压力下,Te-H体系没有形成化合物。综合结果表明,每个氢化氢的高压相行为是独特的,比以前认为的更复杂。
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.