3D/4D imaging of complex and deformed microstructures with pink-beam dark field X-ray microscopy.

IF 9.6 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Communications Materials Pub Date : 2025-01-01 Epub Date: 2025-08-29 DOI:10.1038/s43246-025-00926-9
Can Yildirim, Aditya Shukla, Yubin Zhang, Nikolas Mavrikakis, Louis Lesage, Virginia Sanna, Marilyn Sarkis, Yaozhu Li, Michela La Bella, Carsten Detlefs, Henning Friis Poulsen
{"title":"3D/4D imaging of complex and deformed microstructures with pink-beam dark field X-ray microscopy.","authors":"Can Yildirim, Aditya Shukla, Yubin Zhang, Nikolas Mavrikakis, Louis Lesage, Virginia Sanna, Marilyn Sarkis, Yaozhu Li, Michela La Bella, Carsten Detlefs, Henning Friis Poulsen","doi":"10.1038/s43246-025-00926-9","DOIUrl":null,"url":null,"abstract":"<p><p>Dark Field X-ray Microscopy (DFXM) has advanced 3D non-destructive, high-resolution imaging of strain and orientation in crystalline materials, enabling the study of embedded structures in bulk. However, the photon-hungry nature of monochromatic DFXM limits its applicability for studying highly deformed or weakly crystalline structures, and constrains time-resolved studies in industrially relevant materials. Here, we present pink-beam DFXM (pDFXM) at the ID03 beamline of ESRF, achieving a 27-fold increase in diffracted intensity while maintaining 100 nm spatial resolution. We validate pDFXM by imaging a partially recrystallized aluminum grain, confirming sufficient angular resolution for microstructure mapping. The increased flux significantly enhances the diffracted signal, enabling the resolution of subgrain structures. Additionally, we image a highly deformed ferritic iron grain, previously inaccessible in monochromatic mode without focusing optics. Beyond static imaging, pDFXM enables real-time tracking of grain growth during annealing, achieving hundred-millisecond temporal resolution. By combining high photon flux with non-destructive, high-resolution 3D mapping, pDFXM expands diffraction-contrast imaging to poorly diffracting crystals, unlocking new opportunities for studying grain growth, fatigue, and corrosion in bulk materials.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"198"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00926-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dark Field X-ray Microscopy (DFXM) has advanced 3D non-destructive, high-resolution imaging of strain and orientation in crystalline materials, enabling the study of embedded structures in bulk. However, the photon-hungry nature of monochromatic DFXM limits its applicability for studying highly deformed or weakly crystalline structures, and constrains time-resolved studies in industrially relevant materials. Here, we present pink-beam DFXM (pDFXM) at the ID03 beamline of ESRF, achieving a 27-fold increase in diffracted intensity while maintaining 100 nm spatial resolution. We validate pDFXM by imaging a partially recrystallized aluminum grain, confirming sufficient angular resolution for microstructure mapping. The increased flux significantly enhances the diffracted signal, enabling the resolution of subgrain structures. Additionally, we image a highly deformed ferritic iron grain, previously inaccessible in monochromatic mode without focusing optics. Beyond static imaging, pDFXM enables real-time tracking of grain growth during annealing, achieving hundred-millisecond temporal resolution. By combining high photon flux with non-destructive, high-resolution 3D mapping, pDFXM expands diffraction-contrast imaging to poorly diffracting crystals, unlocking new opportunities for studying grain growth, fatigue, and corrosion in bulk materials.

用粉红束暗场x射线显微镜对复杂和变形的微观结构进行3D/4D成像。
暗场x射线显微镜(DFXM)在晶体材料的应变和取向方面具有先进的3D非破坏性,高分辨率成像,使嵌入式结构的研究成为可能。然而,单色DFXM的光子饥渴特性限制了它在研究高度变形或弱晶体结构方面的适用性,并限制了工业相关材料的时间分辨研究。在ESRF的ID03光束线上,我们提出了粉红色光束DFXM (pDFXM),在保持100 nm空间分辨率的情况下,衍射强度增加了27倍。我们通过对部分再结晶的铝晶粒进行成像来验证pDFXM,确认了足够的角分辨率以进行微观结构映射。增加的通量显著增强了衍射信号,使亚粒结构的分辨率提高。此外,我们成像高度变形的铁素体铁晶粒,以前在单色模式下无法在没有聚焦光学。除了静态成像,pDFXM还可以实时跟踪退火过程中的晶粒生长,实现百毫秒的时间分辨率。通过将高光子通量与非破坏性、高分辨率3D映射相结合,pDFXM将衍射对比度成像扩展到衍射差的晶体,为研究大块材料中的晶粒生长、疲劳和腐蚀提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信