Fátima C Escobedo-González, Andrea Gelardo, Alexandra Reimers, Paula Polonio, Miguel Mompeán, Gustavo A Titaux-Delgado
{"title":"Membrane charge primes the necroptotic kinase RIPK3 for amyloid assembly.","authors":"Fátima C Escobedo-González, Andrea Gelardo, Alexandra Reimers, Paula Polonio, Miguel Mompeán, Gustavo A Titaux-Delgado","doi":"10.1038/s42004-025-01658-0","DOIUrl":null,"url":null,"abstract":"<p><p>Receptor-interacting protein kinase 3 (RIPK3) drives necroptosis by assembling into functional amyloid fibrils. Here we show that lipids modulate RIPK3 amyloidogenesis by stabilizing an aggregation-prone intermediate. While electrostatic repulsion maintains RIPK3 in a soluble state, charge compensation alone is not sufficient for fibril formation and hydrophobic contacts are required to initiate nucleation. Using solution-state NMR, fluorescence-based assays and polymer-encased lipid particles, we demonstrate that negatively charged membranes selectively recruit RIPK3 and restrict its conformational flexibility, accelerating aggregation. These findings reveal a membrane-guided mechanism for RIPK3 assembly and suggest that lipid surfaces, like those implicated in pathological amyloid formation, may modulate functional amyloidogenesis even in the absence of canonical necroptotic stimuli.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"252"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01658-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Receptor-interacting protein kinase 3 (RIPK3) drives necroptosis by assembling into functional amyloid fibrils. Here we show that lipids modulate RIPK3 amyloidogenesis by stabilizing an aggregation-prone intermediate. While electrostatic repulsion maintains RIPK3 in a soluble state, charge compensation alone is not sufficient for fibril formation and hydrophobic contacts are required to initiate nucleation. Using solution-state NMR, fluorescence-based assays and polymer-encased lipid particles, we demonstrate that negatively charged membranes selectively recruit RIPK3 and restrict its conformational flexibility, accelerating aggregation. These findings reveal a membrane-guided mechanism for RIPK3 assembly and suggest that lipid surfaces, like those implicated in pathological amyloid formation, may modulate functional amyloidogenesis even in the absence of canonical necroptotic stimuli.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.