Crosslinking, salt-induced aging, and secondary structure formation in Peptide-containing coacervates inspired by spider silk.

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Armin Amirsadeghi, Raffaella Parlato, Anna Kenbeek, Ana Rita Gaspar, Marta Oggioni, Alessia Lasorsa, Adrivit Mukherjee, Malak Jaber, Małgorzata K Włodarczyk-Biegun, Patrick C A van der Wel, Marleen Kamperman, Guillermo Monreal Santiago
{"title":"Crosslinking, salt-induced aging, and secondary structure formation in Peptide-containing coacervates inspired by spider silk.","authors":"Armin Amirsadeghi, Raffaella Parlato, Anna Kenbeek, Ana Rita Gaspar, Marta Oggioni, Alessia Lasorsa, Adrivit Mukherjee, Malak Jaber, Małgorzata K Włodarczyk-Biegun, Patrick C A van der Wel, Marleen Kamperman, Guillermo Monreal Santiago","doi":"10.1038/s42004-025-01634-8","DOIUrl":null,"url":null,"abstract":"<p><p>Spider silks are exceptional biomaterials: biocompatible, biodegradable, and with remarkable mechanical properties. Unfortunately, attempts to replicate them tend to fail due to the difficulty of synthesizing the proteins that constitute them, and to an incomplete understanding of their processing conditions. Here, we report a synthetic system inspired by spider silk, consisting of a synthetic polyelectrolyte with grafted oligoalanine chains. We have used this peptide-polyelectrolyte conjugate to produce complex coacervates in an analogous process to the liquid-liquid phase separation (LLPS) observed during the natural processing of spider silk. We have characterized these coacervates using rheology, tack test, and solid-state NMR spectroscopy, observing α-helixes and β-sheets. These secondary structures crosslink the material, improving its mechanical properties and its processability, for example, for 3D printing. Furthermore, the peptide-based crosslinks cause distinctive behaviours - such as salt-induced aging. Our approach contributes to the fundamental understanding of the role that LLPS and peptide crosslinks play in spider silk, and to the development of new soft materials crosslinked by peptide aggregation.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"264"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01634-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spider silks are exceptional biomaterials: biocompatible, biodegradable, and with remarkable mechanical properties. Unfortunately, attempts to replicate them tend to fail due to the difficulty of synthesizing the proteins that constitute them, and to an incomplete understanding of their processing conditions. Here, we report a synthetic system inspired by spider silk, consisting of a synthetic polyelectrolyte with grafted oligoalanine chains. We have used this peptide-polyelectrolyte conjugate to produce complex coacervates in an analogous process to the liquid-liquid phase separation (LLPS) observed during the natural processing of spider silk. We have characterized these coacervates using rheology, tack test, and solid-state NMR spectroscopy, observing α-helixes and β-sheets. These secondary structures crosslink the material, improving its mechanical properties and its processability, for example, for 3D printing. Furthermore, the peptide-based crosslinks cause distinctive behaviours - such as salt-induced aging. Our approach contributes to the fundamental understanding of the role that LLPS and peptide crosslinks play in spider silk, and to the development of new soft materials crosslinked by peptide aggregation.

受蜘蛛丝启发的含肽凝聚体的交联、盐诱导老化和二级结构形成。
蜘蛛丝是一种特殊的生物材料:具有生物相容性、可生物降解性和卓越的机械性能。不幸的是,由于合成构成它们的蛋白质的困难,以及对它们的加工条件的不完全了解,试图复制它们往往会失败。在这里,我们报告了一个受蜘蛛丝启发的合成系统,由一种具有接枝低聚丙氨酸链的合成聚电解质组成。我们已经使用这种多肽-多电解质偶联物以类似于在蜘蛛丝的自然加工过程中观察到的液-液相分离(LLPS)的过程产生复杂的凝聚物。我们使用流变学、粘性测试和固态核磁共振光谱来表征这些凝聚体,观察α-螺旋和β-薄片。这些二级结构使材料交联,提高了其机械性能和可加工性,例如用于3D打印。此外,以肽为基础的交联会导致不同的行为,比如盐诱导的衰老。我们的方法有助于从根本上理解LLPS和肽交联在蜘蛛丝中的作用,并有助于开发新的由肽聚集交联的软材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信