{"title":"Acupoint Catgut Embedding Alleviates Neuropathic Pain by Regulating Sigma-1 Receptor Expression.","authors":"Heng-Tao Xie, Xiao-Bo Feng, Kai-Rong Du","doi":"10.2174/0113862073377826250728055125","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Acupoint Catgut Embedding (ACE), also known as acupuncture catgut implantation, exerts analgesic effects by inhibiting Sig-1R. This study aimed to evaluate the modulatory effect of ACE on Sig-1R and its mechanism of action in alleviating nerve pain.</p><p><strong>Methods: </strong>We assessed behavioral changes in mechanosensitive and thermosensitive pain in rats. Spinal cord tissue damage was examined using HE staining, while apoptosis was evaluated through TUNEL staining. Sig-1R expression in spinal cord tissue was analyzed via immunohistochemistry.</p><p><strong>Results: </strong>ACE and Sig-1R antagonists significantly reduced paw withdrawal frequency (PWF), decreased the expression of Bax and cleaved caspase-3 proteins, and alleviated morphological damage in spinal cord cells. They also increased the expression of Bcl-2 and prolonged paw withdrawal latency (PWL) in rats. Additionally, ACE and Sig-1R antagonists reduced levels of TNF-α, IL-1β, and IL-6, as well as malondialdehyde (MDA), while elevating levels of Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx) in both serum and spinal cord tissues. Furthermore, they downregulated the protein expression of p-ERK1/2, p38 MAPK, and Nox2, reduced the number of Th1 and Th17 cells, and increased the number of Th2 and Treg cells.</p><p><strong>Discussion: </strong>Currently, the mechanism of action of ACE on neuropathic pain caused by peripheral nerve injury based on Sig-1R is still unclear. This study evaluated the mechanism by which ACE alleviates neuralgia by regulating the expression of Sig-1R in the spinal cord. In future work, we aim to conduct additional experiments to determine the precise localization of T cells within the spinal cord and to further investigate their direct interactions with glial cells.</p><p><strong>Conclusion: </strong>ACE effectively alleviates nerve pain by modulating Sig-1R expression in the spinal cord, thereby regulating inflammatory responses, oxidative stress, and associated signaling pathways.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073377826250728055125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Acupoint Catgut Embedding (ACE), also known as acupuncture catgut implantation, exerts analgesic effects by inhibiting Sig-1R. This study aimed to evaluate the modulatory effect of ACE on Sig-1R and its mechanism of action in alleviating nerve pain.
Methods: We assessed behavioral changes in mechanosensitive and thermosensitive pain in rats. Spinal cord tissue damage was examined using HE staining, while apoptosis was evaluated through TUNEL staining. Sig-1R expression in spinal cord tissue was analyzed via immunohistochemistry.
Results: ACE and Sig-1R antagonists significantly reduced paw withdrawal frequency (PWF), decreased the expression of Bax and cleaved caspase-3 proteins, and alleviated morphological damage in spinal cord cells. They also increased the expression of Bcl-2 and prolonged paw withdrawal latency (PWL) in rats. Additionally, ACE and Sig-1R antagonists reduced levels of TNF-α, IL-1β, and IL-6, as well as malondialdehyde (MDA), while elevating levels of Superoxide Dismutase (SOD) and Glutathione Peroxidase (GPx) in both serum and spinal cord tissues. Furthermore, they downregulated the protein expression of p-ERK1/2, p38 MAPK, and Nox2, reduced the number of Th1 and Th17 cells, and increased the number of Th2 and Treg cells.
Discussion: Currently, the mechanism of action of ACE on neuropathic pain caused by peripheral nerve injury based on Sig-1R is still unclear. This study evaluated the mechanism by which ACE alleviates neuralgia by regulating the expression of Sig-1R in the spinal cord. In future work, we aim to conduct additional experiments to determine the precise localization of T cells within the spinal cord and to further investigate their direct interactions with glial cells.
Conclusion: ACE effectively alleviates nerve pain by modulating Sig-1R expression in the spinal cord, thereby regulating inflammatory responses, oxidative stress, and associated signaling pathways.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.