Oxidative Stress, Antioxidants, Gut Microbiota and Male Fertility.

IF 2 Q3 CELL BIOLOGY
Natalia Kurhaluk, Piotr Kamiński, Halina Tkaczenko
{"title":"Oxidative Stress, Antioxidants, Gut Microbiota and Male Fertility.","authors":"Natalia Kurhaluk, Piotr Kamiński, Halina Tkaczenko","doi":"10.33594/000000802","DOIUrl":null,"url":null,"abstract":"<p><p>It is imperative to comprehend the multifactorial causes of male infertility and to identify effective treatment methods, to enhance male reproductive health, and to develop more personalised and effective therapeutic interventions. This review discusses the multifactorial aspects contributing to male infertility, focusing on oxidative stress (OS), sperm quality, gut microbiota, and the potential role of adaptogens. A comprehensive literature search was conducted across several major databases, including the Cochrane Library, Medline, Embase, SciSearch, PubMed, Web of Science, Scopus, and Google Scholar. The findings from the studies included in the databases highlight the significant role of oxidative stress in male infertility, with reactive oxygen species (ROS) contributing to sperm DNA fragmentation and impairment of spermatogenesis. The review further elucidates the influence of both endogenous and exogenous sources of ROS, including lifestyle factors and environmental exposures, on male reproductive health. Emerging research also highlights the involvement of key molecular pathways, such as Nrf2, AMPK/PGC-1α, and NF-κB, in regulating OS within the male reproductive system. Additionally, the review outlines the relationship between endothelial dysfunction, cardiovascular health, and male infertility, identifying OS as a common underlying factor. In addition to the OS, the gut microbiota has been identified as a pivotal factor in male fertility, influencing inflammation and hormonal regulation. This review underscores the potential merits of a synergistic strategy that integrates dietary interventions, antioxidants, gut microbiota modulation, and adaptogens to enhance fertility outcomes. Adaptogens, recognised for their capacity to assist the body in coping with stress and re-establishing equilibrium, may confer protective effects against OS and improve reproductive health. The review under discussion emphasises the importance of a holistic approach to male infertility, integrating molecular, clinical, and lifestyle factors to optimise reproductive health.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 S2","pages":"82-123"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is imperative to comprehend the multifactorial causes of male infertility and to identify effective treatment methods, to enhance male reproductive health, and to develop more personalised and effective therapeutic interventions. This review discusses the multifactorial aspects contributing to male infertility, focusing on oxidative stress (OS), sperm quality, gut microbiota, and the potential role of adaptogens. A comprehensive literature search was conducted across several major databases, including the Cochrane Library, Medline, Embase, SciSearch, PubMed, Web of Science, Scopus, and Google Scholar. The findings from the studies included in the databases highlight the significant role of oxidative stress in male infertility, with reactive oxygen species (ROS) contributing to sperm DNA fragmentation and impairment of spermatogenesis. The review further elucidates the influence of both endogenous and exogenous sources of ROS, including lifestyle factors and environmental exposures, on male reproductive health. Emerging research also highlights the involvement of key molecular pathways, such as Nrf2, AMPK/PGC-1α, and NF-κB, in regulating OS within the male reproductive system. Additionally, the review outlines the relationship between endothelial dysfunction, cardiovascular health, and male infertility, identifying OS as a common underlying factor. In addition to the OS, the gut microbiota has been identified as a pivotal factor in male fertility, influencing inflammation and hormonal regulation. This review underscores the potential merits of a synergistic strategy that integrates dietary interventions, antioxidants, gut microbiota modulation, and adaptogens to enhance fertility outcomes. Adaptogens, recognised for their capacity to assist the body in coping with stress and re-establishing equilibrium, may confer protective effects against OS and improve reproductive health. The review under discussion emphasises the importance of a holistic approach to male infertility, integrating molecular, clinical, and lifestyle factors to optimise reproductive health.

氧化应激,抗氧化剂,肠道微生物群和男性生育能力。
必须了解男性不育的多因素原因,确定有效的治疗方法,加强男性生殖健康,制定更加个性化和有效的治疗干预措施。本文综述了导致男性不育的多因素因素,重点讨论了氧化应激(OS)、精子质量、肠道微生物群以及适应原的潜在作用。在几个主要数据库中进行了全面的文献检索,包括Cochrane Library、Medline、Embase、SciSearch、PubMed、Web of Science、Scopus和谷歌Scholar。数据库中包含的研究结果强调了氧化应激在男性不育中的重要作用,活性氧(ROS)导致精子DNA断裂和精子发生障碍。该综述进一步阐明了ROS的内源性和外源性来源,包括生活方式因素和环境暴露,对男性生殖健康的影响。新兴研究还强调了Nrf2、AMPK/ pgp -1α和NF-κB等关键分子通路在调节男性生殖系统OS中的作用。此外,该综述概述了内皮功能障碍、心血管健康和男性不育之间的关系,并确定OS是一个共同的潜在因素。除了OS外,肠道微生物群已被确定为男性生育能力的关键因素,影响炎症和激素调节。这篇综述强调了将饮食干预、抗氧化剂、肠道菌群调节和适应原整合在一起的协同策略的潜在优点,以提高生育结果。适应原因其协助身体应对压力和重建平衡的能力而得到认可,可能具有防止OS和改善生殖健康的保护作用。讨论中的审查强调了对男性不育症采取整体方法的重要性,将分子、临床和生活方式因素结合起来,以优化生殖健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信