Kuisheng Liu, Zihui Yan, Dandan Bai, Rui Jiang, Yan Bi, Xiangjun Ma, Jiani Xiang, Yifan Sheng, Baoxing Dong, Zhiyuan Ning, Shanru Yi, Yingdong Liu, Xinyi Lei, Yanping Jia, Yan Zhang, Yalin Zhang, Yanhe Li, Tao Wu, Chenxiang Xi, Shanyao Liu, Shuyi Liu, Jiayu Chen, Jiqing Yin, Xiaochen Kou, Yanhong Zhao, Hong Wang, Yixuan Wang, Ke Wei, Shaorong Gao, Wenqiang Liu
{"title":"Modeling post-gastrula development via bidirectional pluripotent stem cells.","authors":"Kuisheng Liu, Zihui Yan, Dandan Bai, Rui Jiang, Yan Bi, Xiangjun Ma, Jiani Xiang, Yifan Sheng, Baoxing Dong, Zhiyuan Ning, Shanru Yi, Yingdong Liu, Xinyi Lei, Yanping Jia, Yan Zhang, Yalin Zhang, Yanhe Li, Tao Wu, Chenxiang Xi, Shanyao Liu, Shuyi Liu, Jiayu Chen, Jiqing Yin, Xiaochen Kou, Yanhong Zhao, Hong Wang, Yixuan Wang, Ke Wei, Shaorong Gao, Wenqiang Liu","doi":"10.1038/s41422-025-01172-x","DOIUrl":null,"url":null,"abstract":"<p><p>The absence of stem cells capable of efficiently generating both trophoblast and epiblast lineages has hindered precise recapitulation of embryonic development. Through high-content chemical screening, we established an (AS and LY) AL medium to generate mouse bidirectional pluripotent stem cells (BPSCs) characterized by concurrent expression of OCT4 and CDX2. Mouse BPSCs demonstrated highly plastic differentiation into trophoblast, epiblast and primitive endoderm (PrE) lineages in vitro within 48 h without exogenous inducing factors and efficiently contributed to embryonic and extraembryonic tissues in vivo. Mechanistically, hyperactivation of the Wnt signaling pathway breaks the early lineage differentiation barrier by initiating a Lef1-dependent bypass. Remarkably, integration of BPSCs with PrE induction system enables high-efficiency generation of E8.5-stage embryo models. These advanced models complete gastrulation and recapitulate definitive developmental milestones including brain morphogenesis, neural tube closure, cardiac contraction, somite patterning, and primordial germ cell specification. Moreover, human cells cultured under AL conditions acquire an OCT4 and CDX2 double-positive state and corresponding gene expression profiles, revealing conserved functionality of this culturing platform across species. These findings highlight BPSCs as a powerful tool for investigating early lineage specification and post-gastrulation embryonic development.</p>","PeriodicalId":9926,"journal":{"name":"Cell Research","volume":" ","pages":""},"PeriodicalIF":25.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41422-025-01172-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The absence of stem cells capable of efficiently generating both trophoblast and epiblast lineages has hindered precise recapitulation of embryonic development. Through high-content chemical screening, we established an (AS and LY) AL medium to generate mouse bidirectional pluripotent stem cells (BPSCs) characterized by concurrent expression of OCT4 and CDX2. Mouse BPSCs demonstrated highly plastic differentiation into trophoblast, epiblast and primitive endoderm (PrE) lineages in vitro within 48 h without exogenous inducing factors and efficiently contributed to embryonic and extraembryonic tissues in vivo. Mechanistically, hyperactivation of the Wnt signaling pathway breaks the early lineage differentiation barrier by initiating a Lef1-dependent bypass. Remarkably, integration of BPSCs with PrE induction system enables high-efficiency generation of E8.5-stage embryo models. These advanced models complete gastrulation and recapitulate definitive developmental milestones including brain morphogenesis, neural tube closure, cardiac contraction, somite patterning, and primordial germ cell specification. Moreover, human cells cultured under AL conditions acquire an OCT4 and CDX2 double-positive state and corresponding gene expression profiles, revealing conserved functionality of this culturing platform across species. These findings highlight BPSCs as a powerful tool for investigating early lineage specification and post-gastrulation embryonic development.
期刊介绍:
Cell Research (CR) is an international journal published by Springer Nature in partnership with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). It focuses on publishing original research articles and reviews in various areas of life sciences, particularly those related to molecular and cell biology. The journal covers a broad range of topics including cell growth, differentiation, and apoptosis; signal transduction; stem cell biology and development; chromatin, epigenetics, and transcription; RNA biology; structural and molecular biology; cancer biology and metabolism; immunity and molecular pathogenesis; molecular and cellular neuroscience; plant molecular and cell biology; and omics, system biology, and synthetic biology. CR is recognized as China's best international journal in life sciences and is part of Springer Nature's prestigious family of Molecular Cell Biology journals.