Total Flavonoids of Hedyotis Diffusa Willd Suppresses Prostate Cancer Progression by Promoting AR Ubiquitination and Degradation via the PIAS4/STAT3 Pathway.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Rui Feng, Zhongxing Li, Yuejun Jia, Yali Ji, Meitian Guo, Xing Wang
{"title":"Total Flavonoids of Hedyotis Diffusa Willd Suppresses Prostate Cancer Progression by Promoting AR Ubiquitination and Degradation via the PIAS4/STAT3 Pathway.","authors":"Rui Feng, Zhongxing Li, Yuejun Jia, Yali Ji, Meitian Guo, Xing Wang","doi":"10.1002/cbin.70070","DOIUrl":null,"url":null,"abstract":"<p><p>Total flavonoids of Hedyotis diffusa Willd (TFHDW) is an active compound extracted from Hedyotis diffusa Willd (HDW), one of the most well-known herbs possessing antitumor effects. In this study, the potential antitumor effects of TFHDW were investigated in vitro in mouse prostate cancer cells RM1 and human prostate cancer cells LNCaP and in vivo using a xenograft tumor model involving injection of RM1 cells. Upon TFHDW treatment, RM1 and LNCaP cells exhibited augmented protein expression of the protein inhibitor of activated STAT (PIAS4) and diminished activity of signal transducer and activator of transcription 3 (STAT3), along with impaired proliferative, migratory, and invasive capacities. Ectopic STAT3 expression or PIAS4 silencing in RM1 and LNCaP cells partly annulled the inhibition effect of TFHDW treatment on cell malignant phenotypes. Mechanistic studies revealed that TFHDW elevated transcriptional activity of damage-specific DNA-binding protein 2 via PIAS4/STAT3, consequently enhancing ubiquitination and degradation of androgen receptor (AR) protein. By this, TFHDW alleviated the growth of prostate cancer in vitro and in vivo. Altogether, our work uncovers new insights into the link between TFHDW and the PIAS4/STAT3/AR axis in prostate cancer. These findings may provide a novel therapeutic option for targeting the PIAS4/STAT3/AR axis in prostate cancer.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70070","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Total flavonoids of Hedyotis diffusa Willd (TFHDW) is an active compound extracted from Hedyotis diffusa Willd (HDW), one of the most well-known herbs possessing antitumor effects. In this study, the potential antitumor effects of TFHDW were investigated in vitro in mouse prostate cancer cells RM1 and human prostate cancer cells LNCaP and in vivo using a xenograft tumor model involving injection of RM1 cells. Upon TFHDW treatment, RM1 and LNCaP cells exhibited augmented protein expression of the protein inhibitor of activated STAT (PIAS4) and diminished activity of signal transducer and activator of transcription 3 (STAT3), along with impaired proliferative, migratory, and invasive capacities. Ectopic STAT3 expression or PIAS4 silencing in RM1 and LNCaP cells partly annulled the inhibition effect of TFHDW treatment on cell malignant phenotypes. Mechanistic studies revealed that TFHDW elevated transcriptional activity of damage-specific DNA-binding protein 2 via PIAS4/STAT3, consequently enhancing ubiquitination and degradation of androgen receptor (AR) protein. By this, TFHDW alleviated the growth of prostate cancer in vitro and in vivo. Altogether, our work uncovers new insights into the link between TFHDW and the PIAS4/STAT3/AR axis in prostate cancer. These findings may provide a novel therapeutic option for targeting the PIAS4/STAT3/AR axis in prostate cancer.

白花蛇耳草总黄酮通过PIAS4/STAT3通路促进AR泛素化和降解抑制前列腺癌进展
白花蛇舌草总黄酮(Total flavonoids of Hedyotis diffusa Willd, TFHDW)是从白花蛇舌草(Hedyotis diffusa Willd, HDW)中提取的一种活性化合物,是最著名的具有抗肿瘤作用的草药之一。本研究通过小鼠前列腺癌细胞RM1和人前列腺癌细胞LNCaP的体外实验,以及RM1细胞的异种移植肿瘤模型的体内实验,研究了TFHDW的潜在抗肿瘤作用。TFHDW处理后,RM1和LNCaP细胞表现出活化STAT蛋白抑制剂(PIAS4)的蛋白表达增强,信号换能器和转录激活因子3 (STAT3)的活性降低,同时增殖、迁移和侵袭能力受损。在RM1和LNCaP细胞中,STAT3的异位表达或PIAS4的沉默部分抵消了TFHDW对细胞恶性表型的抑制作用。机制研究表明,TFHDW通过PIAS4/STAT3上调损伤特异性dna结合蛋白2的转录活性,从而增强雄激素受体(AR)蛋白的泛素化和降解。由此可见,TFHDW在体内外均可缓解前列腺癌的生长。总之,我们的工作揭示了TFHDW与前列腺癌中PIAS4/STAT3/AR轴之间联系的新见解。这些发现可能为针对前列腺癌的PIAS4/STAT3/AR轴提供一种新的治疗选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信