Mechanical Force Promotes Mitochondrial Transfer From Macrophages to BMSCs to Enhance Bone Formation.

IF 5.6 1区 生物学 Q2 CELL BIOLOGY
Yingyi Li, Ziwei Yan, Yueming Dai, Hanjia Cai, Yue Chen, Yuyi Chen, Ruofan Jin, Wen Sun, Hua Wang
{"title":"Mechanical Force Promotes Mitochondrial Transfer From Macrophages to BMSCs to Enhance Bone Formation.","authors":"Yingyi Li, Ziwei Yan, Yueming Dai, Hanjia Cai, Yue Chen, Yuyi Chen, Ruofan Jin, Wen Sun, Hua Wang","doi":"10.1111/cpr.70121","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages and bone marrow mesenchymal stem cells (BMSCs) share a close relationship within the osteoimmune microenvironment. During mechanically induced bone formation, macrophages respond to stimuli and regulate this microenvironment, influencing BMSCs' proliferation and differentiation. However, the underlying mechanisms remain incompletely understood. In our study, we employed a cellular tension system and found that mechanical tension altered mitochondrial dynamics in macrophages, leading to increased mitochondrial fission. Using a macrophage-BMSC direct co-culture system, we demonstrated that macrophages transferred mitochondria to BMSCs, a process enhanced by tension. This enhancement was associated with Drp1-mediated mitochondrial fission, as Drp1 knockdown in macrophages abolished the effect. Additionally, using in vitro co-culture and in vivo tibial injection models, we found that mitochondria-rich extracellular vesicles (Mito-EVs) secreted by mechanically stretched macrophages promoted BMSCs' osteogenesis and enhanced bone formation via the CD200 receptor (CD200R)-CD200 interaction. Our findings reveal a pivotal role for mitochondrial transfer in promoting osteogenesis during mechanotransduction, highlighting a novel mechanism of intercellular communication in bone biology.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70121"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70121","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Macrophages and bone marrow mesenchymal stem cells (BMSCs) share a close relationship within the osteoimmune microenvironment. During mechanically induced bone formation, macrophages respond to stimuli and regulate this microenvironment, influencing BMSCs' proliferation and differentiation. However, the underlying mechanisms remain incompletely understood. In our study, we employed a cellular tension system and found that mechanical tension altered mitochondrial dynamics in macrophages, leading to increased mitochondrial fission. Using a macrophage-BMSC direct co-culture system, we demonstrated that macrophages transferred mitochondria to BMSCs, a process enhanced by tension. This enhancement was associated with Drp1-mediated mitochondrial fission, as Drp1 knockdown in macrophages abolished the effect. Additionally, using in vitro co-culture and in vivo tibial injection models, we found that mitochondria-rich extracellular vesicles (Mito-EVs) secreted by mechanically stretched macrophages promoted BMSCs' osteogenesis and enhanced bone formation via the CD200 receptor (CD200R)-CD200 interaction. Our findings reveal a pivotal role for mitochondrial transfer in promoting osteogenesis during mechanotransduction, highlighting a novel mechanism of intercellular communication in bone biology.

机械力促进巨噬细胞向骨髓间充质干细胞的线粒体转移,促进骨形成。
巨噬细胞和骨髓间充质干细胞(BMSCs)在骨免疫微环境中有着密切的关系。在机械诱导骨形成过程中,巨噬细胞对刺激做出反应并调节微环境,影响骨髓间充质干细胞的增殖和分化。然而,潜在的机制仍然不完全清楚。在我们的研究中,我们采用了细胞张力系统,发现机械张力改变了巨噬细胞的线粒体动力学,导致线粒体裂变增加。使用巨噬细胞-骨髓间充质干细胞直接共培养系统,我们证明了巨噬细胞将线粒体转移到骨髓间充质干细胞,这一过程被张力增强。这种增强与Drp1介导的线粒体分裂有关,因为巨噬细胞中Drp1的敲除消除了这种作用。此外,通过体外共培养和体内胫骨注射模型,我们发现机械拉伸巨噬细胞分泌的富含线粒体的细胞外囊泡(mito - ev)通过CD200受体(CD200R)-CD200相互作用促进骨髓间充质干细胞成骨和增强骨形成。我们的研究结果揭示了线粒体转移在机械转导过程中促进成骨的关键作用,突出了骨生物学中细胞间通讯的新机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信