Colonizing bacteria around aggregated lymphoid tissue of the rat ascending colon change diurnally and affect the host local transcriptome.

IF 2.9 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2025-10-01 Epub Date: 2025-08-26 DOI:10.1007/s00441-025-04000-1
Asaka Shimada, Naoto Kubota, Sika Zheng, Rinako Morishita, Toshifumi Yokoyama, Nobuhiko Hoshi, Youhei Mantani
{"title":"Colonizing bacteria around aggregated lymphoid tissue of the rat ascending colon change diurnally and affect the host local transcriptome.","authors":"Asaka Shimada, Naoto Kubota, Sika Zheng, Rinako Morishita, Toshifumi Yokoyama, Nobuhiko Hoshi, Youhei Mantani","doi":"10.1007/s00441-025-04000-1","DOIUrl":null,"url":null,"abstract":"<p><p>The settlement levels of indigenous bacteria show circadian rhythms in various regions of the rat alimentary tract. Numerous bacteria colonize between the mucosal folds of the ascending colon in rodents; however, the rhythm of bacteria colonizing the ascending colon remains to be clarified. Therefore, we first aimed to examine the diurnal changes in bacteria colonizing in the rat ascending colon. The settlement levels of indigenous bacteria were significantly higher at zeitgeber time (ZT) 18 (dark phase) than at ZT6 (light phase) in the region encompassing the aggregated lymphoid tissue in the ascending colon (ALT-AC). The bacterial composition around the ALT-AC was dominated by the phylum Firmicutes and the family Lachnospiraceae, displaying notable distinctions from the compositions found in cecal contents and feces. The relative abundance of some bacterial species around the ALT-AC, such as Mucispirillum schaedleri, changed significantly between ZT6 and ZT18. Furthermore, we explored the effect of bacterial expansion on gene expression in the ALT-AC at ZT18 by administrating antibiotics for 1 day to inhibit bacterial growth. The antibiotic-treated group exhibited significant downregulation of multiple genes, including those associated with cell proliferation (Plk3), differentiation into goblet cells (Spdef, Atoh1, Bhlha15), and Golgi organization (Gorasp2). These results suggested that indigenous bacteria around the rat ALT-AC undergo diurnal changes in both settlement levels, peaking at the dark phase, and bacterial composition. In addition, bacterial expansion during the dark phase can induce changes in the expression of diverse genes, including genes associated with goblet cell differentiation.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":" ","pages":"97-108"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-025-04000-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The settlement levels of indigenous bacteria show circadian rhythms in various regions of the rat alimentary tract. Numerous bacteria colonize between the mucosal folds of the ascending colon in rodents; however, the rhythm of bacteria colonizing the ascending colon remains to be clarified. Therefore, we first aimed to examine the diurnal changes in bacteria colonizing in the rat ascending colon. The settlement levels of indigenous bacteria were significantly higher at zeitgeber time (ZT) 18 (dark phase) than at ZT6 (light phase) in the region encompassing the aggregated lymphoid tissue in the ascending colon (ALT-AC). The bacterial composition around the ALT-AC was dominated by the phylum Firmicutes and the family Lachnospiraceae, displaying notable distinctions from the compositions found in cecal contents and feces. The relative abundance of some bacterial species around the ALT-AC, such as Mucispirillum schaedleri, changed significantly between ZT6 and ZT18. Furthermore, we explored the effect of bacterial expansion on gene expression in the ALT-AC at ZT18 by administrating antibiotics for 1 day to inhibit bacterial growth. The antibiotic-treated group exhibited significant downregulation of multiple genes, including those associated with cell proliferation (Plk3), differentiation into goblet cells (Spdef, Atoh1, Bhlha15), and Golgi organization (Gorasp2). These results suggested that indigenous bacteria around the rat ALT-AC undergo diurnal changes in both settlement levels, peaking at the dark phase, and bacterial composition. In addition, bacterial expansion during the dark phase can induce changes in the expression of diverse genes, including genes associated with goblet cell differentiation.

大鼠升结肠聚集淋巴组织周围的定殖细菌每天都在变化,并影响宿主的局部转录组。
在大鼠消化道的不同区域,本地细菌的沉降水平显示出昼夜节律。在啮齿类动物升结肠的粘膜皱褶之间有大量细菌定植;然而,细菌定植升结肠的节律仍有待澄清。因此,我们首先旨在研究大鼠升结肠中细菌定植的日变化。在升结肠聚集性淋巴组织(ALT-AC)周围区域,在zeitgeber时间(zt18)(暗期),本地细菌的沉降水平显著高于ZT6(光期)。ALT-AC周围的细菌组成以厚壁菌门和毛螺科为主,与盲肠内容物和粪便中的细菌组成有显著差异。在ZT6和ZT18之间,ALT-AC周围的一些细菌种类(如Mucispirillum schaedleri)的相对丰度发生了显著变化。此外,我们通过给药1天抑制细菌生长,探索细菌扩增对ZT18 ALT-AC基因表达的影响。抗生素治疗组表现出多种基因的显著下调,包括与细胞增殖(Plk3)、向杯状细胞分化(Spdef、Atoh1、Bhlha15)和高尔基体组织(Gorasp2)相关的基因。这些结果表明,大鼠ALT-AC周围的本地细菌在沉降水平(在黑暗期达到峰值)和细菌组成方面都发生了昼夜变化。此外,细菌在黑暗期的扩增可以诱导多种基因的表达变化,包括与杯状细胞分化相关的基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信