Akiko Ogawa, Satoshi Watanabe, Iuliia Ozerova, Allen Yi-Lun Tsai, Yoshihiko Kuchitsu, Harrison Byron Chong, Tomoyoshi Kawakami, Jirio Fuse, Wei Han, Ryuhei Kudo, Tomoki Naito, Kota Sato, Toru Nakazawa, Yasunori Saheki, Akiyoshi Hirayama, Peter F Stadler, Mieko Arisawa, Kimi Araki, Liron Bar-Peled, Tomohiko Taguchi, Shinichiro Sawa, Kenji Inaba, Fan-Yan Wei
{"title":"Adenosine kinase and ADAL coordinate detoxification of modified adenosines to safeguard metabolism.","authors":"Akiko Ogawa, Satoshi Watanabe, Iuliia Ozerova, Allen Yi-Lun Tsai, Yoshihiko Kuchitsu, Harrison Byron Chong, Tomoyoshi Kawakami, Jirio Fuse, Wei Han, Ryuhei Kudo, Tomoki Naito, Kota Sato, Toru Nakazawa, Yasunori Saheki, Akiyoshi Hirayama, Peter F Stadler, Mieko Arisawa, Kimi Araki, Liron Bar-Peled, Tomohiko Taguchi, Shinichiro Sawa, Kenji Inaba, Fan-Yan Wei","doi":"10.1016/j.cell.2025.07.041","DOIUrl":null,"url":null,"abstract":"<p><p>RNA contains diverse post-transcriptional modifications, and its catabolic breakdown yields numerous modified nucleosides requiring correct processing, but the mechanisms remain unknown. Here, we demonstrate that three RNA-derived modified adenosines, N<sup>6</sup>-methyladenosine (m<sup>6</sup>A), N<sup>6</sup>,N<sup>6</sup>-dimethyladenosine (m<sup>6,6</sup>A), and N<sup>6</sup>-isopentenyladenosine (i<sup>6</sup>A), are sequentially metabolized into inosine monophosphate (IMP) to mitigate their intrinsic cytotoxicity. After phosphorylation by adenosine kinase (ADK), they undergo deamination by adenosine deaminase-like (ADAL). In Adal knockout mice, N<sup>6</sup>-modified adenosine monophosphates (AMPs) accumulate and allosterically inhibit AMP-activated protein kinase (AMPK), dysregulating glucose metabolism. Furthermore, ADK deficiency, linked to human inherited disorders of purine metabolism, elevates levels of the three modified adenosines, resulting in early lethality in mice. Mechanistically, excessive m<sup>6</sup>A, m<sup>6,6</sup>A, and i<sup>6</sup>A impair lysosomal function by interfering with lysosomal membrane proteins, thereby disrupting lipid metabolism and causing cellular toxicity. Through this nucleotide metabolism pathway and mechanism, cells detoxify modified adenosines, linking modified RNA metabolism to human disease.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":" ","pages":""},"PeriodicalIF":42.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.07.041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA contains diverse post-transcriptional modifications, and its catabolic breakdown yields numerous modified nucleosides requiring correct processing, but the mechanisms remain unknown. Here, we demonstrate that three RNA-derived modified adenosines, N6-methyladenosine (m6A), N6,N6-dimethyladenosine (m6,6A), and N6-isopentenyladenosine (i6A), are sequentially metabolized into inosine monophosphate (IMP) to mitigate their intrinsic cytotoxicity. After phosphorylation by adenosine kinase (ADK), they undergo deamination by adenosine deaminase-like (ADAL). In Adal knockout mice, N6-modified adenosine monophosphates (AMPs) accumulate and allosterically inhibit AMP-activated protein kinase (AMPK), dysregulating glucose metabolism. Furthermore, ADK deficiency, linked to human inherited disorders of purine metabolism, elevates levels of the three modified adenosines, resulting in early lethality in mice. Mechanistically, excessive m6A, m6,6A, and i6A impair lysosomal function by interfering with lysosomal membrane proteins, thereby disrupting lipid metabolism and causing cellular toxicity. Through this nucleotide metabolism pathway and mechanism, cells detoxify modified adenosines, linking modified RNA metabolism to human disease.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.