Atsushi Kikumoto, Kazuhisa Shibata, Takahiro Nishio, David Badre
{"title":"Practice reshapes the geometry and dynamics of task-tailored representations.","authors":"Atsushi Kikumoto, Kazuhisa Shibata, Takahiro Nishio, David Badre","doi":"10.1093/cercor/bhaf125","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive practice makes task performance more efficient and precise, leading to automaticity. However, theories of automaticity differ on which levels of task representations (eg low-level features, stimulus-response mappings, or high-level conjunctive memories of individual events) change with practice, despite predicting the same pattern of improvement (eg power law of practice). To resolve this controversy, we built on recent theoretical advances in understanding computations through neural population dynamics. Specifically, we hypothesized that practice optimizes the neural representational geometry of task representations to minimally separate the highest-level task contingencies needed for successful performance. This involves efficiently reaching conjunctive neural states that integrate task-critical features nonlinearly while abstracting over noncritical dimensions. To test this hypothesis, human participants (n = 40) engaged in extensive practice of a simple, context-dependent action selection task over 3 d while recording electroencephalogram (EEG). During initial rapid improvement in task performance, representations of the highest-level, context-specific conjunctions of task- features were enhanced as a function of the number of successful episodes. Crucially, only enhancement of these conjunctive representations, and not lower-order representations, predicted the power-law improvement in performance. Simultaneously, over sessions, these conjunctive neural states became more stable earlier in time and more aligned, abstracting over redundant task features, which correlated with offline performance gain in reducing switch costs. Thus, practice optimizes the dynamic representational geometry as task-tailored neural states that minimally tesselate the task space, taming their high dimensionality.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf125","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Extensive practice makes task performance more efficient and precise, leading to automaticity. However, theories of automaticity differ on which levels of task representations (eg low-level features, stimulus-response mappings, or high-level conjunctive memories of individual events) change with practice, despite predicting the same pattern of improvement (eg power law of practice). To resolve this controversy, we built on recent theoretical advances in understanding computations through neural population dynamics. Specifically, we hypothesized that practice optimizes the neural representational geometry of task representations to minimally separate the highest-level task contingencies needed for successful performance. This involves efficiently reaching conjunctive neural states that integrate task-critical features nonlinearly while abstracting over noncritical dimensions. To test this hypothesis, human participants (n = 40) engaged in extensive practice of a simple, context-dependent action selection task over 3 d while recording electroencephalogram (EEG). During initial rapid improvement in task performance, representations of the highest-level, context-specific conjunctions of task- features were enhanced as a function of the number of successful episodes. Crucially, only enhancement of these conjunctive representations, and not lower-order representations, predicted the power-law improvement in performance. Simultaneously, over sessions, these conjunctive neural states became more stable earlier in time and more aligned, abstracting over redundant task features, which correlated with offline performance gain in reducing switch costs. Thus, practice optimizes the dynamic representational geometry as task-tailored neural states that minimally tesselate the task space, taming their high dimensionality.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.