Meghan G Lubner, Perry J Pickhardt, Giuseppe V Toia, Timothy P Szczykutowicz
{"title":"Clinical Consequences of Deep Learning Image Reconstruction at CT.","authors":"Meghan G Lubner, Perry J Pickhardt, Giuseppe V Toia, Timothy P Szczykutowicz","doi":"10.1093/bjr/tqaf152","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning reconstruction (DLR) offers a variety of advantages over the current standard iterative reconstruction techniques, including decreased image noise without changes in noise texture and less susceptibility to spatial resolution limitations at low dose. These advances may allow for more aggressive dose reduction in CT imaging while maintaining image quality and diagnostic accuracy. However, performance of DLRs is impacted by the type of framework and training data used. In addition, the patient size and clinical task being performed may impact the amount of dose reduction that can be reasonably employed. Multiple DLRs are currently FDA approved with a growing body of literature evaluating performance throughout this body; however, continued work is warranted to evaluate a variety of clinical scenarios to fully explore the evolving potential of DLR. Depending on the type and strength of DLR applied, blurring and occasionally other artifacts may be introduced. DLRs also show promise in artifact reduction, particularly metal artifact reduction. This commentary focuses primarily on current DLR data for abdominal applications, current challenges, and future areas of potential exploration.</p>","PeriodicalId":9306,"journal":{"name":"British Journal of Radiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjr/tqaf152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning reconstruction (DLR) offers a variety of advantages over the current standard iterative reconstruction techniques, including decreased image noise without changes in noise texture and less susceptibility to spatial resolution limitations at low dose. These advances may allow for more aggressive dose reduction in CT imaging while maintaining image quality and diagnostic accuracy. However, performance of DLRs is impacted by the type of framework and training data used. In addition, the patient size and clinical task being performed may impact the amount of dose reduction that can be reasonably employed. Multiple DLRs are currently FDA approved with a growing body of literature evaluating performance throughout this body; however, continued work is warranted to evaluate a variety of clinical scenarios to fully explore the evolving potential of DLR. Depending on the type and strength of DLR applied, blurring and occasionally other artifacts may be introduced. DLRs also show promise in artifact reduction, particularly metal artifact reduction. This commentary focuses primarily on current DLR data for abdominal applications, current challenges, and future areas of potential exploration.
期刊介绍:
BJR is the international research journal of the British Institute of Radiology and is the oldest scientific journal in the field of radiology and related sciences.
Dating back to 1896, BJR’s history is radiology’s history, and the journal has featured some landmark papers such as the first description of Computed Tomography "Computerized transverse axial tomography" by Godfrey Hounsfield in 1973. A valuable historical resource, the complete BJR archive has been digitized from 1896.
Quick Facts:
- 2015 Impact Factor – 1.840
- Receipt to first decision – average of 6 weeks
- Acceptance to online publication – average of 3 weeks
- ISSN: 0007-1285
- eISSN: 1748-880X
Open Access option