Thai Anh Do, Van Quyen Nguyen, Thi Minh Chau Nguyen, Thi Hang Nga Nguyen, Thi Huong Le
{"title":"A one-step chemical treatment to directly isolate microcrystalline cellulose from lignocellulose source.","authors":"Thai Anh Do, Van Quyen Nguyen, Thi Minh Chau Nguyen, Thi Hang Nga Nguyen, Thi Huong Le","doi":"10.1186/s40643-025-00920-6","DOIUrl":null,"url":null,"abstract":"<p><p>In the study, we report an effective and one-step chemical treatment for directly isolating microcrystalline cellulose (MCC) with a width of 10-50 μm and length of 100-1000 μm from various agricultural waste sources. This chemical treatment uses a peracetic acid solution combined with 2% H₂SO₄ at 80 °C for 2 h. After this one -step chemical treatment, we observed significant changes in chemical composition. For example, the cellulose percentage substantially increased across all biomass sources: from 26.73 to 55.94% for dragon fruit foliage, and from 41.26 to 64.13% for corn cob, and from 17.86 to 67.38% for banana pseudostem. Simultaneously, the lignin content decreased from 22.05 to 1.03%, 12.74 to 3.76% and 14.27 to 2.73%, respectively for dragon fruit foliage, corn cob, and banana pseudostem. XRD confirmed that the crystallinity of the bleached cellulose is high (above 65%), and elemental analysis showed the existence of only O and C elements in the bleached sample. We attributed the effectivity of our chemical treatment to the combination effect of solvent polarity, strong oxidative agent and H<sub>2</sub>SO<sub>4</sub> acid, which allows the removal of extractive, the lignin and partially hydrolysis hemicellulose component simultaneously at the short time. Our microcrystalline cellulose can serve as an effective matrix for gel polymer electrolytes, exhibiting good mechanical behavior and excellent electrical properties, with highest ionic conductivity of 197 mS. cm<sup>-1</sup>. Our study opens a new, simple path to directly isolate microcrystalline cellulose from lignocellulosic source and extend the application of microcrystalline cellulose toward the field in energy storage and conversion.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"89"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00920-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the study, we report an effective and one-step chemical treatment for directly isolating microcrystalline cellulose (MCC) with a width of 10-50 μm and length of 100-1000 μm from various agricultural waste sources. This chemical treatment uses a peracetic acid solution combined with 2% H₂SO₄ at 80 °C for 2 h. After this one -step chemical treatment, we observed significant changes in chemical composition. For example, the cellulose percentage substantially increased across all biomass sources: from 26.73 to 55.94% for dragon fruit foliage, and from 41.26 to 64.13% for corn cob, and from 17.86 to 67.38% for banana pseudostem. Simultaneously, the lignin content decreased from 22.05 to 1.03%, 12.74 to 3.76% and 14.27 to 2.73%, respectively for dragon fruit foliage, corn cob, and banana pseudostem. XRD confirmed that the crystallinity of the bleached cellulose is high (above 65%), and elemental analysis showed the existence of only O and C elements in the bleached sample. We attributed the effectivity of our chemical treatment to the combination effect of solvent polarity, strong oxidative agent and H2SO4 acid, which allows the removal of extractive, the lignin and partially hydrolysis hemicellulose component simultaneously at the short time. Our microcrystalline cellulose can serve as an effective matrix for gel polymer electrolytes, exhibiting good mechanical behavior and excellent electrical properties, with highest ionic conductivity of 197 mS. cm-1. Our study opens a new, simple path to directly isolate microcrystalline cellulose from lignocellulosic source and extend the application of microcrystalline cellulose toward the field in energy storage and conversion.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology