Jennifer H Pham, Wei Zhang, Kim-Tuyen T Le, Bindu Kodati, Charles E Amankwa, Biddut DebNath, Gretchen A Johnson, Thien T Bui, Rachel Y Gitter, Jonah P Gutierrez, Brendon R Hatfield, Rojan Satyal, Ella R Sinnott, Raghu R Krishnamoorthy, Suchismita Acharya, Dorota L Stankowska
{"title":"Hybrid molecule SA-10 and its PLGA nanosuspension protect human and rodent retinal ganglion cells against neuronal injury.","authors":"Jennifer H Pham, Wei Zhang, Kim-Tuyen T Le, Bindu Kodati, Charles E Amankwa, Biddut DebNath, Gretchen A Johnson, Thien T Bui, Rachel Y Gitter, Jonah P Gutierrez, Brendon R Hatfield, Rojan Satyal, Ella R Sinnott, Raghu R Krishnamoorthy, Suchismita Acharya, Dorota L Stankowska","doi":"10.1186/s12868-025-00971-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glaucoma is a leading cause of blindness characterized by retinal ganglion cell (RGC) degeneration. SA-10, a dual-acting compound with ROS scavenging and NO-donating properties, was evaluated to enhance RGC survival and function in models of oxidative stress, ischemia/reperfusion (I/R) injury, and neurotrophic factor (NF) deprivation.</p><p><strong>Methods: </strong>SA-10-loaded nanoparticles (SA-10-NP) with a size of 279.6 ± 20.9 nm, polydispersity index of 0.34, and encapsulation efficiency of 80.6% were synthesized and tested for sustained release over 28 days. I/R injury was induced by elevating intraocular pressure to 120 mmHg for 60 min in C57BL/6J mice, followed by SA-10-NP treatment (1% w/v). Retinal ganglion cell function and survival were evaluated using PERG and PVEP. Oxidative stress in primary RGCs and retinal explants was induced using endothelin-3 (ET-3), and the effects of SA-10 (10 µM) on ROS levels were assessed. In ex vivo human retinal explants (HREs), SA-10 treatment effects on oxidative stress markers NRF2 and HMOX1 were analyzed.</p><p><strong>Results: </strong>SA-10-NP improved PERG amplitudes (112.96% in females, p < 0.01) and PVEP amplitudes (67.53% in females, p < 0.01), preserving RGC density in both central and mid-peripheral regions. Immunohistochemistry showed upregulation of Hmox1 and downregulation of TNF-α in the SA-10-NP-treated group. SA-10 significantly reduced ROS levels in primary RGCs and retinal explants exposed to endothelin-3 (ET-3), decreasing fluorescence intensity by 25.9% (p < 0.01) and 14.7% (p < 0.0001), respectively. SA-10 upregulated oxidative stress markers (NRF2 and HMOX1) and enhanced RGC survival in NF-deprived HREs.</p><p><strong>Conclusions: </strong>SA-10 demonstrated significant ROS reduction and preserved RGC survival and function in both I/R mouse models and HREs, with immunohistochemistry confirming upregulation of Hmox1 and downregulation of TNF-α in the SA-10-NP-treated group. SA-10-NP provided sustained drug delivery and bioavailability, showcasing strong neuroprotective effects and offering a potential therapeutic strategy for glaucomatous optic neuropathy and other neurodegenerative conditions.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"26 1","pages":"51"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12369271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-025-00971-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glaucoma is a leading cause of blindness characterized by retinal ganglion cell (RGC) degeneration. SA-10, a dual-acting compound with ROS scavenging and NO-donating properties, was evaluated to enhance RGC survival and function in models of oxidative stress, ischemia/reperfusion (I/R) injury, and neurotrophic factor (NF) deprivation.
Methods: SA-10-loaded nanoparticles (SA-10-NP) with a size of 279.6 ± 20.9 nm, polydispersity index of 0.34, and encapsulation efficiency of 80.6% were synthesized and tested for sustained release over 28 days. I/R injury was induced by elevating intraocular pressure to 120 mmHg for 60 min in C57BL/6J mice, followed by SA-10-NP treatment (1% w/v). Retinal ganglion cell function and survival were evaluated using PERG and PVEP. Oxidative stress in primary RGCs and retinal explants was induced using endothelin-3 (ET-3), and the effects of SA-10 (10 µM) on ROS levels were assessed. In ex vivo human retinal explants (HREs), SA-10 treatment effects on oxidative stress markers NRF2 and HMOX1 were analyzed.
Results: SA-10-NP improved PERG amplitudes (112.96% in females, p < 0.01) and PVEP amplitudes (67.53% in females, p < 0.01), preserving RGC density in both central and mid-peripheral regions. Immunohistochemistry showed upregulation of Hmox1 and downregulation of TNF-α in the SA-10-NP-treated group. SA-10 significantly reduced ROS levels in primary RGCs and retinal explants exposed to endothelin-3 (ET-3), decreasing fluorescence intensity by 25.9% (p < 0.01) and 14.7% (p < 0.0001), respectively. SA-10 upregulated oxidative stress markers (NRF2 and HMOX1) and enhanced RGC survival in NF-deprived HREs.
Conclusions: SA-10 demonstrated significant ROS reduction and preserved RGC survival and function in both I/R mouse models and HREs, with immunohistochemistry confirming upregulation of Hmox1 and downregulation of TNF-α in the SA-10-NP-treated group. SA-10-NP provided sustained drug delivery and bioavailability, showcasing strong neuroprotective effects and offering a potential therapeutic strategy for glaucomatous optic neuropathy and other neurodegenerative conditions.
期刊介绍:
BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.