Yisen Jin, Aaron J Molstad, Ander Wilson, Joseph Antonelli
{"title":"Smooth and shape-constrained quantile distributed lag models.","authors":"Yisen Jin, Aaron J Molstad, Ander Wilson, Joseph Antonelli","doi":"10.1093/biomtc/ujaf101","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to environmental pollutants during the gestational period can significantly impact infant health outcomes, such as birth weight and neurological development. Identifying critical windows of susceptibility, which are specific periods during pregnancy when exposure has the most profound effects, is essential for developing targeted interventions. Distributed lag models (DLMs) are widely used in environmental epidemiology to analyze the temporal patterns of exposure and their impact on health outcomes. However, traditional DLMs focus on modeling the conditional mean, which may fail to capture heterogeneity in the relationship between predictors and the outcome. Moreover, when modeling the distribution of health outcomes like gestational birth weight, it is the extreme quantiles that are of most clinical relevance. We introduce 2 new quantile distributed lag model (QDLM) estimators designed to address the limitations of existing methods by leveraging smoothness and shape constraints, such as unimodality and concavity, to enhance interpretability and efficiency. We apply our QDLM estimators to the Colorado birth cohort data, demonstrating their effectiveness in identifying critical windows of susceptibility and informing public health interventions.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure to environmental pollutants during the gestational period can significantly impact infant health outcomes, such as birth weight and neurological development. Identifying critical windows of susceptibility, which are specific periods during pregnancy when exposure has the most profound effects, is essential for developing targeted interventions. Distributed lag models (DLMs) are widely used in environmental epidemiology to analyze the temporal patterns of exposure and their impact on health outcomes. However, traditional DLMs focus on modeling the conditional mean, which may fail to capture heterogeneity in the relationship between predictors and the outcome. Moreover, when modeling the distribution of health outcomes like gestational birth weight, it is the extreme quantiles that are of most clinical relevance. We introduce 2 new quantile distributed lag model (QDLM) estimators designed to address the limitations of existing methods by leveraging smoothness and shape constraints, such as unimodality and concavity, to enhance interpretability and efficiency. We apply our QDLM estimators to the Colorado birth cohort data, demonstrating their effectiveness in identifying critical windows of susceptibility and informing public health interventions.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.