Smooth and shape-constrained quantile distributed lag models.

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-07-03 DOI:10.1093/biomtc/ujaf101
Yisen Jin, Aaron J Molstad, Ander Wilson, Joseph Antonelli
{"title":"Smooth and shape-constrained quantile distributed lag models.","authors":"Yisen Jin, Aaron J Molstad, Ander Wilson, Joseph Antonelli","doi":"10.1093/biomtc/ujaf101","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to environmental pollutants during the gestational period can significantly impact infant health outcomes, such as birth weight and neurological development. Identifying critical windows of susceptibility, which are specific periods during pregnancy when exposure has the most profound effects, is essential for developing targeted interventions. Distributed lag models (DLMs) are widely used in environmental epidemiology to analyze the temporal patterns of exposure and their impact on health outcomes. However, traditional DLMs focus on modeling the conditional mean, which may fail to capture heterogeneity in the relationship between predictors and the outcome. Moreover, when modeling the distribution of health outcomes like gestational birth weight, it is the extreme quantiles that are of most clinical relevance. We introduce 2 new quantile distributed lag model (QDLM) estimators designed to address the limitations of existing methods by leveraging smoothness and shape constraints, such as unimodality and concavity, to enhance interpretability and efficiency. We apply our QDLM estimators to the Colorado birth cohort data, demonstrating their effectiveness in identifying critical windows of susceptibility and informing public health interventions.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exposure to environmental pollutants during the gestational period can significantly impact infant health outcomes, such as birth weight and neurological development. Identifying critical windows of susceptibility, which are specific periods during pregnancy when exposure has the most profound effects, is essential for developing targeted interventions. Distributed lag models (DLMs) are widely used in environmental epidemiology to analyze the temporal patterns of exposure and their impact on health outcomes. However, traditional DLMs focus on modeling the conditional mean, which may fail to capture heterogeneity in the relationship between predictors and the outcome. Moreover, when modeling the distribution of health outcomes like gestational birth weight, it is the extreme quantiles that are of most clinical relevance. We introduce 2 new quantile distributed lag model (QDLM) estimators designed to address the limitations of existing methods by leveraging smoothness and shape constraints, such as unimodality and concavity, to enhance interpretability and efficiency. We apply our QDLM estimators to the Colorado birth cohort data, demonstrating their effectiveness in identifying critical windows of susceptibility and informing public health interventions.

光滑和形状约束的分位数分布滞后模型。
妊娠期暴露于环境污染物可显著影响婴儿的健康结果,如出生体重和神经发育。确定易感性的关键窗口期,即怀孕期间暴露影响最深远的特定时期,对于制定有针对性的干预措施至关重要。分布滞后模型(DLMs)在环境流行病学中被广泛用于分析暴露的时间模式及其对健康结果的影响。然而,传统的dlm侧重于对条件均值进行建模,这可能无法捕捉预测因子与结果之间关系的异质性。此外,当对诸如妊娠出生体重等健康结果的分布进行建模时,最具临床相关性的是极端分位数。我们引入了两个新的分位数分布滞后模型(QDLM)估计器,旨在通过利用平滑性和形状约束(如单峰性和凹性)来解决现有方法的局限性,以提高可解释性和效率。我们将我们的QDLM估计器应用于科罗拉多州出生队列数据,证明了它们在识别易感性关键窗口和告知公共卫生干预措施方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信