Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Liuyuan Dong, Chengzhi Xu, Ruizhen Xie, Xuyang Wang, Wanli Yang, Yimeng Li
{"title":"Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques.","authors":"Liuyuan Dong, Chengzhi Xu, Ruizhen Xie, Xuyang Wang, Wanli Yang, Yimeng Li","doi":"10.3390/biomimetics10080554","DOIUrl":null,"url":null,"abstract":"<p><p>Steady-State Visual Evoked Potentials (SSVEPs) have emerged as an efficient means of interaction in brain-computer interfaces (BCIs), achieving bioinspired efficient language output for individuals with aphasia. Addressing the underutilization of frequency information of SSVEPs and redundant computation by existing transformer-based deep learning methods, this paper analyzes signals from both the time and frequency domains, proposing a stacked encoder-decoder (SED) network architecture based on an xLSTM model and spatial attention mechanism, termed SED-xLSTM, which firstly applies xLSTM to the SSVEP speller field. This model takes the low-channel spectrogram as input and employs the filter bank technique to make full use of harmonic information. By leveraging a gating mechanism, SED-xLSTM effectively extracts and fuses high-dimensional spatial-channel semantic features from SSVEP signals. Experimental results on three public datasets demonstrate the superior performance of SED-xLSTM in terms of classification accuracy and information transfer rate, particularly outperforming existing methods under cross-validation across various temporal scales.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10080554","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Steady-State Visual Evoked Potentials (SSVEPs) have emerged as an efficient means of interaction in brain-computer interfaces (BCIs), achieving bioinspired efficient language output for individuals with aphasia. Addressing the underutilization of frequency information of SSVEPs and redundant computation by existing transformer-based deep learning methods, this paper analyzes signals from both the time and frequency domains, proposing a stacked encoder-decoder (SED) network architecture based on an xLSTM model and spatial attention mechanism, termed SED-xLSTM, which firstly applies xLSTM to the SSVEP speller field. This model takes the low-channel spectrogram as input and employs the filter bank technique to make full use of harmonic information. By leveraging a gating mechanism, SED-xLSTM effectively extracts and fuses high-dimensional spatial-channel semantic features from SSVEP signals. Experimental results on three public datasets demonstrate the superior performance of SED-xLSTM in terms of classification accuracy and information transfer rate, particularly outperforming existing methods under cross-validation across various temporal scales.

Abstract Image

Abstract Image

Abstract Image

利用基于xlstm的深度学习和空间注意和滤波器库技术增强SSVEP仿生拼写。
稳态视觉诱发电位(SSVEPs)已成为脑机接口(bci)中一种有效的交互手段,为失语症患者实现生物启发的高效语言输出。针对现有基于变压器的深度学习方法对SSVEP频率信息利用不足和计算冗余的问题,从时域和频域对信号进行分析,提出了一种基于xLSTM模型和空间注意机制的堆叠式编码器(SED)网络架构SED-xLSTM,首次将xLSTM应用于SSVEP拼写领域。该模型以低通道频谱图为输入,采用滤波器组技术,充分利用谐波信息。通过利用门通机制,SED-xLSTM可以有效地从SSVEP信号中提取和融合高维空间通道语义特征。在三个公共数据集上的实验结果表明,该方法在分类精度和信息传递率方面具有优异的性能,特别是在跨时间尺度的交叉验证下优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信