Infrared Neural Stimulation Elicits Distinct Molecular Pathways in Astrocytes Based on Laser Pulse Parameters.

IF 2.6 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Wilson R Adams, Ana I Borrachero-Conejo, Pratheepa Kumari Rasiah, Emanuella Saracino, Roberto Zamboni, Eric Duco Jansen, Valentina Benfenati, Anita Mahadevan-Jansen
{"title":"Infrared Neural Stimulation Elicits Distinct Molecular Pathways in Astrocytes Based on Laser Pulse Parameters.","authors":"Wilson R Adams, Ana I Borrachero-Conejo, Pratheepa Kumari Rasiah, Emanuella Saracino, Roberto Zamboni, Eric Duco Jansen, Valentina Benfenati, Anita Mahadevan-Jansen","doi":"10.1002/adbi.202500269","DOIUrl":null,"url":null,"abstract":"<p><p>Label-free optical stimulation of brain cells with infrared (IR) light provides a powerful tool for spatially targeted neuromodulation. However, lingering questions about the off-target effects of IR stimulation on non-neuronal cells remain sparsely explored. It is shown that rat astroglial cultures are independently sensitive to single pulses of infrared light, evoking calcium signaling and osmoregulatory phenomena in vitro. Recent studies highlight that astrocytes respond differently to electromagnetic and laser stimulation, recruiting different pathways. The impact of three different IR stimulation time courses on astrocyte calcium and water transport dynamics is explored with widefield fluorescence microscopy and pharmacology to fill this gap. Results show that different stimulation methods can evoke astrocyte calcium responses, resulting from distinct biomolecular signaling processes. Notably, swelling and shrinkage are also differently evoked by short-term and long-term stimulation pulses. It is shown that specific IR stimulation can drive selective water and calcium dynamics in astrocytes. The work uniquely reports label-free optical modulation techniques to drive astroglial homeostatic machinery, a crucial process in healthy brain function that lacks tools for spatially precise modulation. More broadly, the results demonstrate the need to consider off-target effects with neuromodulation strategies and how to use such effects to study brain physiology.</p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":" ","pages":"e00269"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/adbi.202500269","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Label-free optical stimulation of brain cells with infrared (IR) light provides a powerful tool for spatially targeted neuromodulation. However, lingering questions about the off-target effects of IR stimulation on non-neuronal cells remain sparsely explored. It is shown that rat astroglial cultures are independently sensitive to single pulses of infrared light, evoking calcium signaling and osmoregulatory phenomena in vitro. Recent studies highlight that astrocytes respond differently to electromagnetic and laser stimulation, recruiting different pathways. The impact of three different IR stimulation time courses on astrocyte calcium and water transport dynamics is explored with widefield fluorescence microscopy and pharmacology to fill this gap. Results show that different stimulation methods can evoke astrocyte calcium responses, resulting from distinct biomolecular signaling processes. Notably, swelling and shrinkage are also differently evoked by short-term and long-term stimulation pulses. It is shown that specific IR stimulation can drive selective water and calcium dynamics in astrocytes. The work uniquely reports label-free optical modulation techniques to drive astroglial homeostatic machinery, a crucial process in healthy brain function that lacks tools for spatially precise modulation. More broadly, the results demonstrate the need to consider off-target effects with neuromodulation strategies and how to use such effects to study brain physiology.

基于激光脉冲参数的红外神经刺激诱导星形胶质细胞不同的分子通路。
利用红外(IR)光对脑细胞进行无标记光刺激,为空间定向神经调节提供了有力的工具。然而,关于IR刺激对非神经元细胞的脱靶效应的悬而未决的问题仍然很少被探索。研究表明,大鼠星形胶质细胞培养物对红外光单脉冲独立敏感,在体外唤起钙信号和渗透调节现象。最近的研究强调,星形胶质细胞对电磁和激光刺激的反应不同,招募不同的途径。利用广角荧光显微镜和药理学方法探讨了三种不同红外刺激时间对星形胶质细胞钙和水运输动力学的影响,以填补这一空白。结果表明,不同的刺激方式可引起星形胶质细胞钙反应,这是由不同的生物分子信号传导过程引起的。值得注意的是,短期和长期刺激脉冲引起的肿胀和收缩也不同。研究表明,特定的红外刺激可以驱动星形胶质细胞的选择性水钙动力学。这项工作独特地报道了无标记光调制技术来驱动星形胶质细胞稳态机制,这是健康大脑功能中缺乏空间精确调制工具的关键过程。更广泛地说,研究结果表明需要考虑神经调节策略的脱靶效应,以及如何利用这种效应来研究大脑生理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信