Intestinal invagination caused by circumferential contraction with longitudinal relaxation of the wall.

IF 2.7 3区 医学 Q2 BIOPHYSICS
Hitomi Okino, Hironori Takeda, Shunichi Ishida, Yohsuke Imai
{"title":"Intestinal invagination caused by circumferential contraction with longitudinal relaxation of the wall.","authors":"Hitomi Okino, Hironori Takeda, Shunichi Ishida, Yohsuke Imai","doi":"10.1007/s10237-025-02010-0","DOIUrl":null,"url":null,"abstract":"<p><p>Pediatric intussusception is frequently observed in the ileocecal region, where the terminal ileum invaginates into the colon. Previous studies have indicated an association between pediatric intussusception and inflammation as well as intestinal motility. However, the underlying mechanisms remain unclear, particularly with regard to the mechanics. We hypothesized that invagination occurs when longitudinal and circular smooth muscles are not coordinated during peristalsis. To test the hypothesis from a mechanical perspective, we developed a computational model of the terminal ileum, where the terminal ileum is modeled as a hyperelastic tube. We showed that circumferential contraction with longitudinal relaxation of the hyperelastic tube wall caused invagination in the contracting region of the tube. We also found that invagination occurred when a square-shaped contracting region emerged in the hyperelastic tube. These results indicate that uncoordinated motion of the circular and longitudinal muscles can lead to invagination of the intestinal wall. In addition, the configuration of peristalsis may serve as an indicator of the risk of pediatric intussusception.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-02010-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pediatric intussusception is frequently observed in the ileocecal region, where the terminal ileum invaginates into the colon. Previous studies have indicated an association between pediatric intussusception and inflammation as well as intestinal motility. However, the underlying mechanisms remain unclear, particularly with regard to the mechanics. We hypothesized that invagination occurs when longitudinal and circular smooth muscles are not coordinated during peristalsis. To test the hypothesis from a mechanical perspective, we developed a computational model of the terminal ileum, where the terminal ileum is modeled as a hyperelastic tube. We showed that circumferential contraction with longitudinal relaxation of the hyperelastic tube wall caused invagination in the contracting region of the tube. We also found that invagination occurred when a square-shaped contracting region emerged in the hyperelastic tube. These results indicate that uncoordinated motion of the circular and longitudinal muscles can lead to invagination of the intestinal wall. In addition, the configuration of peristalsis may serve as an indicator of the risk of pediatric intussusception.

肠内陷是由肠壁纵向松弛引起的圆周收缩。
小儿肠套叠常见于回肠盲区,此处回肠末端内陷到结肠内。先前的研究表明,儿童肠套叠与炎症和肠蠕动之间存在关联。然而,潜在的机制仍然不清楚,特别是在力学方面。我们假设当纵向和圆形平滑肌在蠕动过程中不协调时发生内陷。为了从力学角度检验这一假设,我们开发了一个回肠末端的计算模型,其中回肠末端被建模为一个超弹性管。我们发现,在超弹性管壁的纵向松弛的周向收缩引起内陷管的收缩区域。我们还发现,当超弹性管中出现方形收缩区域时,内陷发生。这些结果表明,环形和纵向肌肉的不协调运动可导致肠壁内陷。此外,肠蠕动的结构可以作为儿童肠套叠风险的一个指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信