Shahariar Emon, Al Amin, Md Hossain, Shovon Saha, Md Asaduzzaman, Md Lokman Hossen, Mohammad Abu Sayem Karal, Hiromitsu Takaba, Md Khorshed Alam
{"title":"Optimizing electroporation via pulse modulation: a molecular dynamics study.","authors":"Shahariar Emon, Al Amin, Md Hossain, Shovon Saha, Md Asaduzzaman, Md Lokman Hossen, Mohammad Abu Sayem Karal, Hiromitsu Takaba, Md Khorshed Alam","doi":"10.1007/s00249-025-01793-5","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient molecular transport via reversible electroporation requires sustained existence of the pore without causing irreversible cellular damage. In this study, we used molecular dynamics simulations to investigate pore formation during electroporation, and we characterized the transition to hydrophilic pores. Our simulations reveal that during the hydrophilic state, the reapplication of an electric field, even at reduced magnitudes, extends the pore duration while maintaining structural integrity. Furthermore, we established that the pore size can be controlled by regulating the intervals between successive electric field pulses, offering precise control over membrane permeabilization. These findings provide a foundation for fine-tuning electroporation protocols, enabling customized permeabilization strategies based on the properties of the molecules to be delivered. This approach has the potential to significantly improve the efficacy of targeted drug delivery and gene therapy. It also creates new possibilities for precise and controlled cellular manipulation in therapeutic contexts.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01793-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient molecular transport via reversible electroporation requires sustained existence of the pore without causing irreversible cellular damage. In this study, we used molecular dynamics simulations to investigate pore formation during electroporation, and we characterized the transition to hydrophilic pores. Our simulations reveal that during the hydrophilic state, the reapplication of an electric field, even at reduced magnitudes, extends the pore duration while maintaining structural integrity. Furthermore, we established that the pore size can be controlled by regulating the intervals between successive electric field pulses, offering precise control over membrane permeabilization. These findings provide a foundation for fine-tuning electroporation protocols, enabling customized permeabilization strategies based on the properties of the molecules to be delivered. This approach has the potential to significantly improve the efficacy of targeted drug delivery and gene therapy. It also creates new possibilities for precise and controlled cellular manipulation in therapeutic contexts.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.