{"title":"Influence of polyethylene microplastics on carbendazim degradation by Rhodococcus sp. XY-1: Molecular mechanisms and soil bioremediation effects.","authors":"Zi-Yue Ding, Zi-Wang Yuan, Zi-Wei Hua, Xiao-Yue Hu, Chun-Yue Chai, Lin Zhang, Zhi-Wen Xi, Tie-Jun Wang, Qiu-Hong Niu, Hao Zhang","doi":"10.1016/j.ecoenv.2025.118917","DOIUrl":null,"url":null,"abstract":"<p><p>Carbendazim persists in soil, causing harm to the environment. Microbial degradation is a main way to remove carbendazim from soil, and polyethylene (PE), as a kind of microplastics, widely exists in soil. However, the mechanism by which PE influences carbendazim biodegradation is still unclear. This study isolated Rhodococcus sp. XY-1, a highly efficient carbendazim-degrading bacterium capable of completely degrading 50 mg·L<sup>-1</sup> carbendazim, as its sole carbon and nitrogen source within 4 d. Scanning electron microscopy revealed that PE (700 µm, 5 %) depressed XY-1 cell surfaces but induced protective intercellular substance adhesion. According to cellular reactive oxygen species (ROS) assays and Fourier transform infrared spectroscopy, PE exposure increased intracellular ROS levels in XY-1 and enhanced the absorption intensity of characteristic protein and nucleic acid peaks, indicating metabolic stimulation. Consequently, PE accelerated carbendazim degradation by strain XY-1, achieving a 79.0 % removal of 50 mg·L<sup>-1</sup> carbendazim within 60 h. Furthermore, PE itself underwent oxidation and hydrolysis, as evidenced by the simulated soil experiments at an increased carbon-to-oxygen ratio (from 0.016 to 0.072) and the emergence of -OH functional groups. PE also enhanced soil microbial activity, regulated organic carbon content, and influenced carbendazim adsorption, collectively promoting its degradation. Under PE (700 µm, 5 %) amendment, strain XY-1 achieved a degradation rate of 58.0 % for 5.0 mg·kg<sup>-1</sup> carbendazim within 7 d in soil. This study elucidates the mechanism by which microplastics influence the microbial degradation of soil organic pollutants.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"303 ","pages":"118917"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.118917","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbendazim persists in soil, causing harm to the environment. Microbial degradation is a main way to remove carbendazim from soil, and polyethylene (PE), as a kind of microplastics, widely exists in soil. However, the mechanism by which PE influences carbendazim biodegradation is still unclear. This study isolated Rhodococcus sp. XY-1, a highly efficient carbendazim-degrading bacterium capable of completely degrading 50 mg·L-1 carbendazim, as its sole carbon and nitrogen source within 4 d. Scanning electron microscopy revealed that PE (700 µm, 5 %) depressed XY-1 cell surfaces but induced protective intercellular substance adhesion. According to cellular reactive oxygen species (ROS) assays and Fourier transform infrared spectroscopy, PE exposure increased intracellular ROS levels in XY-1 and enhanced the absorption intensity of characteristic protein and nucleic acid peaks, indicating metabolic stimulation. Consequently, PE accelerated carbendazim degradation by strain XY-1, achieving a 79.0 % removal of 50 mg·L-1 carbendazim within 60 h. Furthermore, PE itself underwent oxidation and hydrolysis, as evidenced by the simulated soil experiments at an increased carbon-to-oxygen ratio (from 0.016 to 0.072) and the emergence of -OH functional groups. PE also enhanced soil microbial activity, regulated organic carbon content, and influenced carbendazim adsorption, collectively promoting its degradation. Under PE (700 µm, 5 %) amendment, strain XY-1 achieved a degradation rate of 58.0 % for 5.0 mg·kg-1 carbendazim within 7 d in soil. This study elucidates the mechanism by which microplastics influence the microbial degradation of soil organic pollutants.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.