Oxidation State Manipulation of NiOx for High Performance and Light-Soaking Stability of Perovskite Solar Modules.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yongseok Yoo, Heesuk Jung, Hee Jeong Park, Jichan Kim, Kun Soo Jung, Hye Ryeong Lee, Junseop Byeon, Haram Lee, Woosum Cho, Sung Hoan Kim, Se-Woong Baek, Sungkoo Lee, Min Jae Ko, Gabseok Seo, Yung-Eun Sung, Seunghwan Bae
{"title":"Oxidation State Manipulation of NiO<sub>x</sub> for High Performance and Light-Soaking Stability of Perovskite Solar Modules.","authors":"Yongseok Yoo, Heesuk Jung, Hee Jeong Park, Jichan Kim, Kun Soo Jung, Hye Ryeong Lee, Junseop Byeon, Haram Lee, Woosum Cho, Sung Hoan Kim, Se-Woong Baek, Sungkoo Lee, Min Jae Ko, Gabseok Seo, Yung-Eun Sung, Seunghwan Bae","doi":"10.1002/smtd.202501325","DOIUrl":null,"url":null,"abstract":"<p><p>NiO<sub>x</sub> is widely used for hole-transporting layers in p-i-n-type perovskite solar cells (PSCs) due to its stability, wide bandgap (≈3.5 eV), and solution processability. However, during solution processing, oxygen exposure can induce non-stoichiometry, forming Ni<sup>≥3 +</sup>. While Ni<sup>≥3 +</sup> enhances hole mobility, it also promotes redox reactions at the interface, undermining long-term stability. To utilize the improved mobility without sacrificing stability, bilayer NiO<sub>x</sub> films with controlled Ni<sup>≥3 +</sup> concentrations can be fabricated. Sputtering is ideal for this, enabling precise control of oxygen partial pressure during deposition. This study utilizes sputtering to regulate Ni<sup>≥3 +</sup> levels and optimize the ratio of two NiO<sub>x</sub> layers in bilayer films, improving charge extraction and transport. A fabricated perovskite module with a 16.0 cm<sup>2</sup> aperture area achieves a photo-conversion efficiency (PCE) of 16.5%. Additionally, the module retains 80% of its initial PCE after 1000 h under continuous 1-sun illumination, thanks to the stable bilayer NiO<sub>x</sub> structure.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01325"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501325","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

NiOx is widely used for hole-transporting layers in p-i-n-type perovskite solar cells (PSCs) due to its stability, wide bandgap (≈3.5 eV), and solution processability. However, during solution processing, oxygen exposure can induce non-stoichiometry, forming Ni≥3 +. While Ni≥3 + enhances hole mobility, it also promotes redox reactions at the interface, undermining long-term stability. To utilize the improved mobility without sacrificing stability, bilayer NiOx films with controlled Ni≥3 + concentrations can be fabricated. Sputtering is ideal for this, enabling precise control of oxygen partial pressure during deposition. This study utilizes sputtering to regulate Ni≥3 + levels and optimize the ratio of two NiOx layers in bilayer films, improving charge extraction and transport. A fabricated perovskite module with a 16.0 cm2 aperture area achieves a photo-conversion efficiency (PCE) of 16.5%. Additionally, the module retains 80% of its initial PCE after 1000 h under continuous 1-sun illumination, thanks to the stable bilayer NiOx structure.

钙钛矿太阳能组件高性能和光浸泡稳定性的氧化态操纵。
由于其稳定性、宽禁带(≈3.5 eV)和溶液可加工性,NiOx被广泛用于p-i-n型钙钛矿太阳能电池(PSCs)的空穴传输层。然而,在溶液处理过程中,氧暴露可诱导非化学计量,形成Ni≥3 +。虽然Ni≥3 +增强了空穴迁移率,但也促进了界面处的氧化还原反应,破坏了长期稳定性。为了在不牺牲稳定性的情况下利用提高的迁移率,可以制备控制Ni≥3 +浓度的双层NiOx薄膜。溅射是理想的方法,可以在沉积过程中精确控制氧分压。本研究利用溅射调节Ni≥3 +水平,优化双层膜中两层NiOx的比例,改善电荷的提取和输运。制备的钙钛矿组件孔径面积为16.0 cm2,光转换效率(PCE)为16.5%。此外,由于稳定的双层NiOx结构,在连续1个太阳照射1000小时后,该模块保留了80%的初始PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信