Andrew G. Sharo, Megan A. Supple, Randy Cabrera, William E. Seligmann, Samuel Sacco, Cassondra D. Columbus, Devon E. Pearse, Beth Shapiro, John Carlos Garza
{"title":"Recent Adaptation in a Threatened Salmonid Revealed by Museum Genomics","authors":"Andrew G. Sharo, Megan A. Supple, Randy Cabrera, William E. Seligmann, Samuel Sacco, Cassondra D. Columbus, Devon E. Pearse, Beth Shapiro, John Carlos Garza","doi":"10.1111/mec.70063","DOIUrl":null,"url":null,"abstract":"<p>Steelhead/rainbow trout (<i>Oncorhynchus mykiss</i>) is an imperilled salmonid with two main life history strategies: migrate to the ocean or remain in freshwater. Domesticated hatchery forms of this species have been stocked into almost all California waterways, possibly resulting in introgression into natural populations and altered population structure. We compared whole-genome sequence data from contemporary populations against a set of museum population samples of steelhead from the same locations that were collected prior to most hatchery stocking. We observed minimal introgression and few steelhead-hatchery trout hybrids despite a century of extensive stocking. Our historical data show signals of introgression with a sister species and indications of an early hatchery facility. Finally, we found that migration-associated haplotypes have become less frequent over time, a likely adaptation to decreased opportunities for migration. Since contemporary migration-associated haplotype frequencies have been used to guide species management, we consider this to be a rare example of shifting baseline syndrome that has been validated with historical data. We suggest cautious optimism that a century of hatchery stocking has had minimal impact on California steelhead population genetic structure, but we note that continued shifts in life history may lead to further declines in the ocean-going form of the species.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.70063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.70063","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Steelhead/rainbow trout (Oncorhynchus mykiss) is an imperilled salmonid with two main life history strategies: migrate to the ocean or remain in freshwater. Domesticated hatchery forms of this species have been stocked into almost all California waterways, possibly resulting in introgression into natural populations and altered population structure. We compared whole-genome sequence data from contemporary populations against a set of museum population samples of steelhead from the same locations that were collected prior to most hatchery stocking. We observed minimal introgression and few steelhead-hatchery trout hybrids despite a century of extensive stocking. Our historical data show signals of introgression with a sister species and indications of an early hatchery facility. Finally, we found that migration-associated haplotypes have become less frequent over time, a likely adaptation to decreased opportunities for migration. Since contemporary migration-associated haplotype frequencies have been used to guide species management, we consider this to be a rare example of shifting baseline syndrome that has been validated with historical data. We suggest cautious optimism that a century of hatchery stocking has had minimal impact on California steelhead population genetic structure, but we note that continued shifts in life history may lead to further declines in the ocean-going form of the species.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms