Integrative omics approaches to uncover liquid-based cancer-predicting biomarkers in Lynch syndrome.

IF 4.7 2区 医学 Q1 ONCOLOGY
Minta Kärkkäinen, Tero Sievänen, Tia-Marje Korhonen, Joonas Tuomikoski, Kirsi Pylvänäinen, Sami Äyrämö, Toni T Seppälä, Jukka-Pekka Mecklin, Eija K Laakkonen, Tiina Jokela
{"title":"Integrative omics approaches to uncover liquid-based cancer-predicting biomarkers in Lynch syndrome.","authors":"Minta Kärkkäinen, Tero Sievänen, Tia-Marje Korhonen, Joonas Tuomikoski, Kirsi Pylvänäinen, Sami Äyrämö, Toni T Seppälä, Jukka-Pekka Mecklin, Eija K Laakkonen, Tiina Jokela","doi":"10.1002/ijc.70106","DOIUrl":null,"url":null,"abstract":"<p><p>Lynch syndrome is a genetic cancer-predisposing syndrome caused by pathogenic mutations in DNA mismatch repair (path_MMR) genes. Due to the elevated cancer risk, novel screening methods, alongside current surveillance techniques, could enhance cancer risk stratification. Here we show how bi-omics integration could be utilized to pinpoint potential cancer-predicting biomarkers in Lynch syndrome. We studied which blood-based circulating microRNAs and metabolites could predict Lynch syndrome cancer occurrence within a 5.8-year prospective surveillance period. We used single- and bi-omics bioinformatic analyses and identified omics-level patterns and associations across these biological layers. Lasso Cox regression was used to highlight the most promising cancer-predicting biomarkers. Our findings revealed distinct circulating metabolite landscapes among path_MMR variant carriers and a circulating microRNA co-expression module significantly associated with future cancer incidence. These microRNAs regulate cancer-related pathways, including the PI3K/Akt signaling pathway. Additionally, a metabolite module consisting of ApoB-containing lipoproteins (low-, intermediate-, and very low-density lipoproteins) showed distinct levels across path_MMR variants. Notably, three biomarkers-hsa-miR-101-3p, hsa-miR-183-5p, and triglycerides in high-density lipoprotein particles (HDL_TG)-significantly predicted cancer risk, achieving a Harrel's Concordance Index (C-index) of 0.76 (p = .0007). Elevated levels of these biomarkers indicated increased cancer risk. Internal validation of the model yielded a C-index of 0.72. The bi-omics approach and the identified biomarkers offer promising insights for future studies regarding cancer risk identification in Lynch syndrome.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ijc.70106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lynch syndrome is a genetic cancer-predisposing syndrome caused by pathogenic mutations in DNA mismatch repair (path_MMR) genes. Due to the elevated cancer risk, novel screening methods, alongside current surveillance techniques, could enhance cancer risk stratification. Here we show how bi-omics integration could be utilized to pinpoint potential cancer-predicting biomarkers in Lynch syndrome. We studied which blood-based circulating microRNAs and metabolites could predict Lynch syndrome cancer occurrence within a 5.8-year prospective surveillance period. We used single- and bi-omics bioinformatic analyses and identified omics-level patterns and associations across these biological layers. Lasso Cox regression was used to highlight the most promising cancer-predicting biomarkers. Our findings revealed distinct circulating metabolite landscapes among path_MMR variant carriers and a circulating microRNA co-expression module significantly associated with future cancer incidence. These microRNAs regulate cancer-related pathways, including the PI3K/Akt signaling pathway. Additionally, a metabolite module consisting of ApoB-containing lipoproteins (low-, intermediate-, and very low-density lipoproteins) showed distinct levels across path_MMR variants. Notably, three biomarkers-hsa-miR-101-3p, hsa-miR-183-5p, and triglycerides in high-density lipoprotein particles (HDL_TG)-significantly predicted cancer risk, achieving a Harrel's Concordance Index (C-index) of 0.76 (p = .0007). Elevated levels of these biomarkers indicated increased cancer risk. Internal validation of the model yielded a C-index of 0.72. The bi-omics approach and the identified biomarkers offer promising insights for future studies regarding cancer risk identification in Lynch syndrome.

综合组学方法揭示Lynch综合征中基于液体的癌症预测生物标志物
Lynch综合征是一种由DNA错配修复(path_MMR)基因致病性突变引起的遗传性癌症易感综合征。由于癌症风险升高,新的筛查方法和现有的监测技术可以加强癌症风险分层。在这里,我们展示了如何利用双组学整合来确定Lynch综合征中潜在的癌症预测生物标志物。我们研究了在5.8年的前瞻性监测期内,哪些基于血液的循环microrna和代谢物可以预测Lynch综合征癌症的发生。我们使用单组学和双组学生物信息学分析,并确定了这些生物层之间的组学水平模式和关联。使用Lasso Cox回归来突出最有希望的癌症预测生物标志物。我们的研究结果揭示了在path_MMR变异携带者中不同的循环代谢物景观,以及与未来癌症发病率显著相关的循环microRNA共表达模块。这些microrna调节癌症相关通路,包括PI3K/Akt信号通路。此外,由含载脂蛋白b的脂蛋白(低密度、中密度和极低密度脂蛋白)组成的代谢物模块在path_MMR变异中显示出不同的水平。值得注意的是,高密度脂蛋白颗粒(HDL_TG)中的三个生物标志物-hsa- mir -101-3p, hsa-miR-183-5p和甘油三酯-显著预测癌症风险,达到了哈雷尔一致性指数(C-index) 0.76 (p = .0007)。这些生物标志物水平的升高表明癌症风险增加。模型内部验证的c指数为0.72。双组学方法和确定的生物标志物为Lynch综合征癌症风险识别的未来研究提供了有希望的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.40
自引率
3.10%
发文量
460
审稿时长
2 months
期刊介绍: The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories: -Cancer Epidemiology- Cancer Genetics and Epigenetics- Infectious Causes of Cancer- Innovative Tools and Methods- Molecular Cancer Biology- Tumor Immunology and Microenvironment- Tumor Markers and Signatures- Cancer Therapy and Prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信