{"title":"Reaction of N-Ferrocenylcarbamates with Nitric Oxide: An Application for Detection of Inflammatory Sites In Vivo.","authors":"Roman Selin, Hülya Gizem Özkan, Galyna Bila, Rostyslav Bilyy, Andriy Mokhir","doi":"10.1002/cmdc.202500356","DOIUrl":null,"url":null,"abstract":"<p><p>Electron-deficient aminoferrocenes (edAFs) exhibit anticancer activity both in vitro and in vivo. However, their mechanism of action remains unclear. Studies using fluorogenic edAF derivatives suggest that the ferrocenyl moiety undergoes oxidation or decomposition within cells, resulting in the formation of unknown products. Interestingly, this process is not significantly facilitated by H<sub>2</sub>O<sub>2</sub>, indicating that this intracellular oxidant does not alter edAFs in the cellular environment. To identify alternative endogenous oxidants, NO is investigated as a potential candidate. Under aerobic conditions, NO is found to efficiently induce the oxidation and decomposition of edAFs. This transformation is mediated by an electrophilic nitrosation reaction, followed by nitroso-oxime tautomerism and subsequent degradation of the ferrocenyl moiety with the release of ligand-derived oxime 7 and iron ions. These findings suggest that NO may play a key role in the intracellular modification of edAFs, potentially contributing to their anticancer activity or their metabolism or both. Building on this mechanism, an effective probe is developed for detecting NO in living cells and identifying sites of inflammation in vivo. These probes are based on a modular design that enables facile substitution of the fluorescent dye, allowing straightforward customization for diverse applications both in cellulo and in vivo.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202500356"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202500356","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electron-deficient aminoferrocenes (edAFs) exhibit anticancer activity both in vitro and in vivo. However, their mechanism of action remains unclear. Studies using fluorogenic edAF derivatives suggest that the ferrocenyl moiety undergoes oxidation or decomposition within cells, resulting in the formation of unknown products. Interestingly, this process is not significantly facilitated by H2O2, indicating that this intracellular oxidant does not alter edAFs in the cellular environment. To identify alternative endogenous oxidants, NO is investigated as a potential candidate. Under aerobic conditions, NO is found to efficiently induce the oxidation and decomposition of edAFs. This transformation is mediated by an electrophilic nitrosation reaction, followed by nitroso-oxime tautomerism and subsequent degradation of the ferrocenyl moiety with the release of ligand-derived oxime 7 and iron ions. These findings suggest that NO may play a key role in the intracellular modification of edAFs, potentially contributing to their anticancer activity or their metabolism or both. Building on this mechanism, an effective probe is developed for detecting NO in living cells and identifying sites of inflammation in vivo. These probes are based on a modular design that enables facile substitution of the fluorescent dye, allowing straightforward customization for diverse applications both in cellulo and in vivo.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.