Juan Manuel Sieben, Andrea E. Alvarez, Myriam Torres García, Diana M. Arciniegas Jaimes, Noelia Bajales Luna, Elizabeth Laura Moyano
{"title":"Mandarin Peel-Derived Carbon-Supported PtPd Catalysts for the Electro-Oxidation of Glycerol in Alkaline Medium","authors":"Juan Manuel Sieben, Andrea E. Alvarez, Myriam Torres García, Diana M. Arciniegas Jaimes, Noelia Bajales Luna, Elizabeth Laura Moyano","doi":"10.1002/cplu.202500299","DOIUrl":null,"url":null,"abstract":"<p>In this work, mandarin peel-derived biocarbons synthesized by fast pyrolysis are tested as support materials for PtPd nanoparticles for the electrochemical oxidation of glycerol in an alkaline electrolyte. The biocarbons, synthesized at 300 °C (mandarin peel-derived biocarbons (BCM)-300) and 500 °C (BCM-500), present good electronic conductivities and adequate surface properties. Bimetallic PtPd nanoparticles with average sizes between 3.5 and 3.9 nm and a Pt:Pd ratio of 3:1 are deposited over the biocarbons by a pulse microwave-assisted polyol method. The electrochemical experiments show that the mass-specific activity for the glycerol oxidation reaction of the PtPd particles supported over the biocarbons is higher than that reported for the bimetallic catalyst deposited over Vulcan carbon black. In addition, the catalyst deposited over the biocarbons presents lower potential onsets, lower apparent activation energies, and lower charge transfer resistances compared to the bimetallic particles supported over the commercial carbon material. The superior electrocatalytic performance of PtPd/BCM-300 and PtPd/BCM-500 catalysts is attributed to the synergistic effect between the bimetallic particles and the biocarbons, which promotes glycerol oxidation through both the electronic effects and the bifunctional mechanism.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":"90 10","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cplu.202500299","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, mandarin peel-derived biocarbons synthesized by fast pyrolysis are tested as support materials for PtPd nanoparticles for the electrochemical oxidation of glycerol in an alkaline electrolyte. The biocarbons, synthesized at 300 °C (mandarin peel-derived biocarbons (BCM)-300) and 500 °C (BCM-500), present good electronic conductivities and adequate surface properties. Bimetallic PtPd nanoparticles with average sizes between 3.5 and 3.9 nm and a Pt:Pd ratio of 3:1 are deposited over the biocarbons by a pulse microwave-assisted polyol method. The electrochemical experiments show that the mass-specific activity for the glycerol oxidation reaction of the PtPd particles supported over the biocarbons is higher than that reported for the bimetallic catalyst deposited over Vulcan carbon black. In addition, the catalyst deposited over the biocarbons presents lower potential onsets, lower apparent activation energies, and lower charge transfer resistances compared to the bimetallic particles supported over the commercial carbon material. The superior electrocatalytic performance of PtPd/BCM-300 and PtPd/BCM-500 catalysts is attributed to the synergistic effect between the bimetallic particles and the biocarbons, which promotes glycerol oxidation through both the electronic effects and the bifunctional mechanism.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.