Interfacial Li+ Diffusion Booster Accelerated by Enhanced Metal-Organic Framework Sieving and Wettability for High-Voltage Solid-State Lithium Metal Batteries.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-02 DOI:10.1002/cssc.202501351
Tianhua Chen, Yongzheng Zhang, Simeng Wang, Jin Li, Hongzhen Lin, Dusan Losic, Shimou Chen, Jian Wang
{"title":"Interfacial Li<sup>+</sup> Diffusion Booster Accelerated by Enhanced Metal-Organic Framework Sieving and Wettability for High-Voltage Solid-State Lithium Metal Batteries.","authors":"Tianhua Chen, Yongzheng Zhang, Simeng Wang, Jin Li, Hongzhen Lin, Dusan Losic, Shimou Chen, Jian Wang","doi":"10.1002/cssc.202501351","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state lithium metal batteries (SSLMBs) are promising for realizing higher energy density. However, the poor interfacial Li<sup>+</sup> transport kinetics and Li dendrite growth inhibit SSLMBs, leading to sluggish interfacial ion diffusion and depressive lifespan, which is attributed to high barriers blocked by anions or interface space in solid-state electrolytes. Herein, a flexible solid-state polymer skeleton employed with ionic liquid and metal-organic frameworks (PIM) electrolyte is proposed to strengthen interfacial Li ion exchange by improving the Li<sup>+</sup> sieving effect and interfacial wettability. Thanks to the immobilization effect of TFSI<sup>-</sup> anions affected by positive metal atom centers and pore morphology, the PIM electrolyte exhibits exceptional properties, i.e., a high ionic conductivity up to 3.1 mS cm<sup>-1</sup> at 60 °C and an improved Li<sup>+</sup> transference number of 0.65, enabling symmetric cells of Li metal to run steadily for over 1000 h with lower voltage hysteresis (25 mV). Meanwhile, matching with high-voltage electrodes, the solid-state PIM electrolyte exhibits good compatibility and stability toward LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> and LiFePO<sub>4</sub> electrodes, showing the capacity retentions of 85.5% and 96.5% after 120 and 400 cycles, respectively. This work suggests low interfacial diffusion resistances and high compatibility for make it a promising candidate for future solid-state battery.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501351"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501351","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state lithium metal batteries (SSLMBs) are promising for realizing higher energy density. However, the poor interfacial Li+ transport kinetics and Li dendrite growth inhibit SSLMBs, leading to sluggish interfacial ion diffusion and depressive lifespan, which is attributed to high barriers blocked by anions or interface space in solid-state electrolytes. Herein, a flexible solid-state polymer skeleton employed with ionic liquid and metal-organic frameworks (PIM) electrolyte is proposed to strengthen interfacial Li ion exchange by improving the Li+ sieving effect and interfacial wettability. Thanks to the immobilization effect of TFSI- anions affected by positive metal atom centers and pore morphology, the PIM electrolyte exhibits exceptional properties, i.e., a high ionic conductivity up to 3.1 mS cm-1 at 60 °C and an improved Li+ transference number of 0.65, enabling symmetric cells of Li metal to run steadily for over 1000 h with lower voltage hysteresis (25 mV). Meanwhile, matching with high-voltage electrodes, the solid-state PIM electrolyte exhibits good compatibility and stability toward LiNi0.6Co0.2Mn0.2O2 and LiFePO4 electrodes, showing the capacity retentions of 85.5% and 96.5% after 120 and 400 cycles, respectively. This work suggests low interfacial diffusion resistances and high compatibility for make it a promising candidate for future solid-state battery.

高压固态锂金属电池中增强金属-有机骨架筛分和润湿性加速的界面Li+扩散助推器
固态锂金属电池(sslmb)是实现更高能量密度的理想材料。然而,较差的界面Li+传输动力学和Li枝晶生长抑制了sslmb,导致界面离子扩散缓慢和寿命缩短,这是由于固态电解质中阴离子或界面空间阻挡了高屏障。本文提出了一种柔性固体聚合物骨架,结合离子液体和金属有机框架(PIM)电解质,通过改善Li+的筛分效果和界面润湿性来增强界面Li离子交换。由于TFSI-阴离子受正极金属原子中心和孔隙形态影响的固定作用,PIM电解质表现出优异的性能,即在60°C时离子电导率高达3.1 mS cm-1,锂离子转移数提高到0.65,使锂金属对称电池稳定运行1000小时以上,电压滞后(25 mV)更低。同时,与高压电极匹配,固态PIM电解质对LiNi0.6Co0.2Mn0.2O2和LiFePO4电极具有良好的相容性和稳定性,循环120次和400次后的容量保留率分别为85.5%和96.5%。这项工作表明,低界面扩散阻力和高兼容性使其成为未来固态电池的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信