Pd20Te7 Nanowires as an Efficient Multifunctional Catalyst for CO2 and O2 Electroreduction.

IF 3.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chenchen Li, Kailei Cao, Long Chen, Penghao Li, Hanzhuo Luo, Sihui Pan, Qi Shao
{"title":"Pd<sub>20</sub>Te<sub>7</sub> Nanowires as an Efficient Multifunctional Catalyst for CO<sub>2</sub> and O<sub>2</sub> Electroreduction.","authors":"Chenchen Li, Kailei Cao, Long Chen, Penghao Li, Hanzhuo Luo, Sihui Pan, Qi Shao","doi":"10.1002/asia.202500833","DOIUrl":null,"url":null,"abstract":"<p><p>Discovering a multifunctional electrocatalyst that can achieve the selective electrochemical reduction of a variety of small molecules (such as CO<sub>2</sub> and O<sub>2</sub>, etc.) is a highly promising process. However, most reported Pd-based nanomaterials can only convert one kind of small molecule. In this study, we have constructed Pd<sub>20</sub>Te<sub>7</sub> intermetallic nanowires (Pd<sub>20</sub>Te<sub>7</sub> NWs) with numerous low-coordinated atoms, which can serve as an efficient and multifunctional catalyst for CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) and oxygen reduction reaction (ORR). For CO<sub>2</sub>RR, Pd<sub>20</sub>Te<sub>7</sub> NWs can achieve CO Faraday efficiency (FE<sub>CO</sub>) of 96.2% at the potential of -0.8 V versus RHE. For ORR, Pd<sub>20</sub>Te<sub>7</sub> NWs have selectivity for H<sub>2</sub>O<sub>2</sub> of over 90%. Moreover, at 0.2 V versus RHE, the H<sub>2</sub>O<sub>2</sub> production rate of Pd<sub>20</sub>Te<sub>7</sub> NWs can achieve 1624.2 mmol g<sub>Pd</sub> <sup>-1</sup> h<sup>-1</sup>, which is approximately 8.5 times that of Pd NWs. Compared with Pd NWs, the optimized electronic structure and surface morphology of Pd<sub>20</sub>Te<sub>7</sub> NWs balance the adsorption of COOH* and CO* on the catalyst during CO<sub>2</sub>RR and change the adsorption mode of O<sub>2</sub> (side-on to end-on) during ORR, thus promoting CO and H<sub>2</sub>O<sub>2</sub> generation during CO<sub>2</sub>RR and ORR, respectively. This work highlights the importance of electronic structure and surface morphology modification of metal catalysts for electrocatalytic reactions.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e00833"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500833","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering a multifunctional electrocatalyst that can achieve the selective electrochemical reduction of a variety of small molecules (such as CO2 and O2, etc.) is a highly promising process. However, most reported Pd-based nanomaterials can only convert one kind of small molecule. In this study, we have constructed Pd20Te7 intermetallic nanowires (Pd20Te7 NWs) with numerous low-coordinated atoms, which can serve as an efficient and multifunctional catalyst for CO2 reduction reaction (CO2RR) and oxygen reduction reaction (ORR). For CO2RR, Pd20Te7 NWs can achieve CO Faraday efficiency (FECO) of 96.2% at the potential of -0.8 V versus RHE. For ORR, Pd20Te7 NWs have selectivity for H2O2 of over 90%. Moreover, at 0.2 V versus RHE, the H2O2 production rate of Pd20Te7 NWs can achieve 1624.2 mmol gPd -1 h-1, which is approximately 8.5 times that of Pd NWs. Compared with Pd NWs, the optimized electronic structure and surface morphology of Pd20Te7 NWs balance the adsorption of COOH* and CO* on the catalyst during CO2RR and change the adsorption mode of O2 (side-on to end-on) during ORR, thus promoting CO and H2O2 generation during CO2RR and ORR, respectively. This work highlights the importance of electronic structure and surface morphology modification of metal catalysts for electrocatalytic reactions.

Pd20Te7纳米线作为CO2和O2电还原的高效多功能催化剂。
发现一种多功能电催化剂,可以实现多种小分子(如CO2和O2等)的选择性电化学还原,是一个非常有前途的过程。然而,大多数报道的钯基纳米材料只能转化一种小分子。在这项研究中,我们构建了具有多个低配位原子的Pd20Te7金属间纳米线(Pd20Te7 NWs),可以作为CO2还原反应(CO2RR)和氧还原反应(ORR)的高效多功能催化剂。对于CO2RR, Pd20Te7 NWs在-0.8 V相对于RHE电位下可以达到96.2%的CO法拉第效率(FECO)。对于ORR, Pd20Te7 NWs对H2O2的选择性超过90%。在相对于RHE的0.2 V下,Pd20Te7 NWs的H2O2产率可达到1624.2 mmol gPd -1 h-1,是Pd NWs的8.5倍。与Pd NWs相比,优化后的Pd20Te7 NWs的电子结构和表面形貌平衡了CO2RR过程中COOH*和CO*在催化剂上的吸附,改变了ORR过程中O2的吸附模式(侧对端对),从而促进了CO2RR和ORR过程中CO和H2O2的生成。这项工作强调了金属催化剂的电子结构和表面形貌修饰在电催化反应中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信