Succinic Acid-Induced Macrophage Endocytosis Promotes Extracellular Vesicle-Based Integrin Beta1 Transfer Accelerating Fibroblast Activation and Sepsis-Associated Pulmonary Fibrosis.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenyu Yang, Ri Tang, Yang Zhou, Jinquan Zhang, Shuya Mei, Yawen Peng, Xi Huang, Shunpeng Xing, Yuan Gao, Qiaoyi Xu, Zhengyu He
{"title":"Succinic Acid-Induced Macrophage Endocytosis Promotes Extracellular Vesicle-Based Integrin Beta1 Transfer Accelerating Fibroblast Activation and Sepsis-Associated Pulmonary Fibrosis.","authors":"Wenyu Yang, Ri Tang, Yang Zhou, Jinquan Zhang, Shuya Mei, Yawen Peng, Xi Huang, Shunpeng Xing, Yuan Gao, Qiaoyi Xu, Zhengyu He","doi":"10.1002/advs.202507411","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated pulmonary fibrosis (SAPF) is a life-threatening condition driven by persistent fibroblast activation and excessive extracellular matrix (ECM) deposition. While metabolic reprogramming, profibrotic extracellular vesicles (EVs), and integrin activation are implicated in pulmonary fibrosis, their interplay remains unclear. This study reveals that succinic acid, a product of glycometabolic reprogramming, promotes macrophage-mediated endocytosis, driving the release of profibrotic EVs. These EVs transfer integrin beta1 (ITGβ1) from macrophages to fibroblasts, activating fibroblasts and advancing SAPF. Through Single-cell RNA sequencing (scRNA-seq), proteomics, immunofluorescence, and electron microscopy, the critical role of EV-mediated ITGβ1 transfer in macrophage-fibroblast communication is identified. Knockdown of ITGβ1 or Alix, a mediator of multivesicular bodies (MVBs) biogenesis, inhibited profibrotic EVs formation and alleviated SAPF. These findings highlight a novel mechanism in that the transfer ITGβ1 via EVs plays a critical role in macrophage-fibroblast communication, representing a novel mechanism underlying SAPF. Targeting EV-mediated ITGβ1 transfer can provide a promising therapeutic strategy to alleviate the progression of SAPF.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07411"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507411","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis-associated pulmonary fibrosis (SAPF) is a life-threatening condition driven by persistent fibroblast activation and excessive extracellular matrix (ECM) deposition. While metabolic reprogramming, profibrotic extracellular vesicles (EVs), and integrin activation are implicated in pulmonary fibrosis, their interplay remains unclear. This study reveals that succinic acid, a product of glycometabolic reprogramming, promotes macrophage-mediated endocytosis, driving the release of profibrotic EVs. These EVs transfer integrin beta1 (ITGβ1) from macrophages to fibroblasts, activating fibroblasts and advancing SAPF. Through Single-cell RNA sequencing (scRNA-seq), proteomics, immunofluorescence, and electron microscopy, the critical role of EV-mediated ITGβ1 transfer in macrophage-fibroblast communication is identified. Knockdown of ITGβ1 or Alix, a mediator of multivesicular bodies (MVBs) biogenesis, inhibited profibrotic EVs formation and alleviated SAPF. These findings highlight a novel mechanism in that the transfer ITGβ1 via EVs plays a critical role in macrophage-fibroblast communication, representing a novel mechanism underlying SAPF. Targeting EV-mediated ITGβ1 transfer can provide a promising therapeutic strategy to alleviate the progression of SAPF.

琥珀酸诱导的巨噬细胞内吞促进基于胞外囊泡的整合素β 1转移,加速成纤维细胞活化和脓毒症相关的肺纤维化。
脓毒症相关肺纤维化(SAPF)是一种由持续的成纤维细胞激活和过度的细胞外基质(ECM)沉积驱动的危及生命的疾病。虽然代谢重编程、纤维化细胞外囊泡(EVs)和整合素激活与肺纤维化有关,但它们之间的相互作用尚不清楚。这项研究表明,糖代谢重编程的产物琥珀酸促进巨噬细胞介导的内吞作用,驱动促纤维化ev的释放。这些ev将整合素β1 (ITGβ1)从巨噬细胞转移到成纤维细胞,激活成纤维细胞并推进SAPF。通过单细胞RNA测序(scRNA-seq)、蛋白质组学、免疫荧光和电镜,研究人员确定了ev介导的ITGβ1转移在巨噬细胞-成纤维细胞通讯中的关键作用。抑制多泡体(multivesicular bodies, MVBs)生物发生介质ITGβ1或Alix,可抑制促纤维化EVs的形成,减轻SAPF。这些发现强调了一种新的机制,即通过EVs转移ITGβ1在巨噬细胞-成纤维细胞通信中起关键作用,代表了SAPF的新机制。靶向ev介导的ITGβ1转移可以提供一种有希望的治疗策略来缓解SAPF的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信