OSNRT1.1B-OSCNGC14/16-CA2+-OSNLP3 Pathway: Phosphorylation-Mediated Maintenance of Nitrogen Homeostasis.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohan Wang, Yongqiang Liu, Weiwei Li, Xiaojun Ma, Wei Wang, Zhimin Jiang, Yiqin Wang, Legong Li, Bin Hu, Chengcai Chu
{"title":"OSNRT1.1B-OSCNGC14/16-CA<sup>2+</sup>-OSNLP3 Pathway: Phosphorylation-Mediated Maintenance of Nitrogen Homeostasis.","authors":"Xiaohan Wang, Yongqiang Liu, Weiwei Li, Xiaojun Ma, Wei Wang, Zhimin Jiang, Yiqin Wang, Legong Li, Bin Hu, Chengcai Chu","doi":"10.1002/advs.202507919","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrate, a crucial nutrient and signaling molecule, is extensively studied across plants. While the NRT1.1-NLP-centered pathway dominates nitrate signaling in Arabidopsis and rice, however, whether there is functional interaction or co-regulation between the primary nitrate response (PNR) and long-term nitrogen utilization remains unclear. Here, a novel nitrate signaling pathway is identified in rice that works alongside the established ubiquitination-mediated OsNRT1.1B-OsSPX4-OsNLP3 cascade. It is demonstrated that OsCNGC14, OsCNGC16, and OsNRT1.1B form a plasma membrane-localized complex in root tips, mediating nitrate-triggered Ca<sup>2</sup>⁺ influx. The absence of either OsCNGC14 or OsCNGC16 abolished Ca<sup>2</sup>⁺ signaling and suppressed PNR. The OsNRT1.1B-OsCNGC14/16 complex activates Ca<sup>2</sup>⁺-dependent phosphorylation of OsNLP3 at Ser193, which accelerates its nuclear translocation and transcriptional activation of nitrate-responsive genes. This phosphorylation enhances both short-term PNR and long-term nitrogenutilization. This findings reveal a dual regulatory network in rice: the Ca<sup>2</sup>⁺-OsNLP3 pathway rapidly amplifies nitrate signals, while the ubiquitination-mediated OsSPX4 degradation ensures sustained nitrogen homeostasis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07919"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507919","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrate, a crucial nutrient and signaling molecule, is extensively studied across plants. While the NRT1.1-NLP-centered pathway dominates nitrate signaling in Arabidopsis and rice, however, whether there is functional interaction or co-regulation between the primary nitrate response (PNR) and long-term nitrogen utilization remains unclear. Here, a novel nitrate signaling pathway is identified in rice that works alongside the established ubiquitination-mediated OsNRT1.1B-OsSPX4-OsNLP3 cascade. It is demonstrated that OsCNGC14, OsCNGC16, and OsNRT1.1B form a plasma membrane-localized complex in root tips, mediating nitrate-triggered Ca2⁺ influx. The absence of either OsCNGC14 or OsCNGC16 abolished Ca2⁺ signaling and suppressed PNR. The OsNRT1.1B-OsCNGC14/16 complex activates Ca2⁺-dependent phosphorylation of OsNLP3 at Ser193, which accelerates its nuclear translocation and transcriptional activation of nitrate-responsive genes. This phosphorylation enhances both short-term PNR and long-term nitrogenutilization. This findings reveal a dual regulatory network in rice: the Ca2⁺-OsNLP3 pathway rapidly amplifies nitrate signals, while the ubiquitination-mediated OsSPX4 degradation ensures sustained nitrogen homeostasis.

osnrt1.1 - oscngc14 /16- ca2 +-OSNLP3通路:磷酸化介导的氮稳态维持。
硝酸盐是一种重要的营养物质和信号分子,在植物中被广泛研究。然而,在拟南芥和水稻中,以nrt1.1 - nlp为中心的通路主导着硝酸盐信号传导,然而,初级硝酸盐响应(PNR)与长期氮利用之间是否存在功能相互作用或协同调节尚不清楚。本研究在水稻中发现了一个新的硝酸盐信号通路,它与已建立的泛素化介导的OsNRT1.1B-OsSPX4-OsNLP3级联一起工作。研究表明,OsCNGC14、OsCNGC16和osnrt11 b在根尖形成质膜定位复合物,介导硝酸盐触发的Ca2 +内流。OsCNGC14或OsCNGC16的缺失消除了Ca2 +信号传导并抑制了PNR。OsNRT1.1B-OsCNGC14/16复合物激活Ca2 +依赖的OsNLP3 Ser193位点磷酸化,从而加速其核易位和硝酸盐应答基因的转录激活。这种磷酸化增强了短期PNR和长期氮利用。这一发现揭示了水稻中的双重调控网络:Ca2 + -OsNLP3途径快速放大硝酸盐信号,而泛素化介导的OsSPX4降解确保了持续的氮稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信