Ultrahigh Energy Density in Dielectric Polymers Near Glass Transition Temperature by Molecular Twisting Conformation Locking.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuting Wan, Hang Luo, Zhongna Yan, Jiajun Peng, Guanghu He, Xiaona Li, Fan Wang, Zhaoyu Ran, Dou Zhang, Qi Li
{"title":"Ultrahigh Energy Density in Dielectric Polymers Near Glass Transition Temperature by Molecular Twisting Conformation Locking.","authors":"Yuting Wan, Hang Luo, Zhongna Yan, Jiajun Peng, Guanghu He, Xiaona Li, Fan Wang, Zhaoyu Ran, Dou Zhang, Qi Li","doi":"10.1002/adma.202510122","DOIUrl":null,"url":null,"abstract":"<p><p>Dielectric polymers with high operating temperatures (T<sub>o</sub>) for capacitive energy storage applications are urgently needed in new energy vehicles and power electronics. Polymers with high glass transition temperatures (T<sub>g</sub>), such as Kapton polyimide (T<sub>g</sub>≈360 °C), suffer low T<sub>o</sub> (< 150 °C) due to electron delocalization between donor and acceptor units. Here, a molecular twisting conformation-locking strategy is proposed for high-temperature dielectric polymers to block intrachain and interchain electron migration pathways. Density functional theory (DFT) calculations indicate that the elevated leakage current in polyimides originates from enhanced electron delocalization induced by intrachain imide ring planarization and interchain donor-acceptor (D-A) face-to-face stacking. The molecular twisting conformation-locking disrupts intrachain imide ring planarization and the face-to-face stacking of interchain D-A units. As a result, the designed polymer exhibits an ultrahigh resistivity of 6.8 × 10<sup>13</sup> Ω m<sup>-1</sup> at 250 °C (close to its T<sub>g</sub>), surpassing the 2.8 × 10<sup>13</sup> Ω m<sup>-1</sup> of PEI at 50 °C. Simultaneously, it achieves an ultrahigh discharge energy density of 4.3 J cm<sup>-3</sup>, outperforming existing high-T<sub>g</sub> dielectric polymers. This study introduces a design paradigm to address the challenge of dielectric polymers that do not function properly as ambient temperatures approach their T<sub>g</sub>.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e10122"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510122","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric polymers with high operating temperatures (To) for capacitive energy storage applications are urgently needed in new energy vehicles and power electronics. Polymers with high glass transition temperatures (Tg), such as Kapton polyimide (Tg≈360 °C), suffer low To (< 150 °C) due to electron delocalization between donor and acceptor units. Here, a molecular twisting conformation-locking strategy is proposed for high-temperature dielectric polymers to block intrachain and interchain electron migration pathways. Density functional theory (DFT) calculations indicate that the elevated leakage current in polyimides originates from enhanced electron delocalization induced by intrachain imide ring planarization and interchain donor-acceptor (D-A) face-to-face stacking. The molecular twisting conformation-locking disrupts intrachain imide ring planarization and the face-to-face stacking of interchain D-A units. As a result, the designed polymer exhibits an ultrahigh resistivity of 6.8 × 1013 Ω m-1 at 250 °C (close to its Tg), surpassing the 2.8 × 1013 Ω m-1 of PEI at 50 °C. Simultaneously, it achieves an ultrahigh discharge energy density of 4.3 J cm-3, outperforming existing high-Tg dielectric polymers. This study introduces a design paradigm to address the challenge of dielectric polymers that do not function properly as ambient temperatures approach their Tg.

分子扭扭构象锁定在接近玻璃化转变温度的介电聚合物中的超高能量密度。
新能源汽车和电力电子迫切需要具有高工作温度(To)的电容储能介质聚合物。具有高玻璃化转变温度(Tg)的聚合物,如Kapton聚酰亚胺(Tg≈360°C),由于供体和受体单元之间的电子离域,其To(< 150°C)较低。本文提出了一种用于高温介质聚合物的分子扭曲构象锁定策略,以阻止链内和链间的电子迁移途径。密度泛函理论(DFT)计算表明,聚酰亚胺中泄漏电流的升高是由于链内亚胺环平面化和链间供体-受体(D-A)面对面叠加引起的电子离域增强所致。分子扭转构象锁定破坏了亚胺环平面化和链间D-A单元的面对面堆积。结果,设计的聚合物在250°C时表现出6.8 × 1013 Ω m-1的超高电阻率(接近其Tg),超过PEI在50°C时的2.8 × 1013 Ω m-1。同时,它实现了4.3 J cm-3的超高放电能量密度,优于现有的高tg介电聚合物。本研究引入了一种设计范例来解决介电聚合物在环境温度接近其Tg时不能正常工作的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信