Optimizing the Electron Density of PVDF-HFP-Based Solid Polymer Electrolyte by Donor-Acceptor COF Toward High-Performance Solid-State Lithium Metal Batteries.

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Conghui Zhang, Linwei Zhao, Fangkun Li, Xin Song, Jiahe Chen, Jun Zeng, Lei Xi, Renzong Hu, Min Zhu, Jun Liu
{"title":"Optimizing the Electron Density of PVDF-HFP-Based Solid Polymer Electrolyte by Donor-Acceptor COF Toward High-Performance Solid-State Lithium Metal Batteries.","authors":"Conghui Zhang, Linwei Zhao, Fangkun Li, Xin Song, Jiahe Chen, Jun Zeng, Lei Xi, Renzong Hu, Min Zhu, Jun Liu","doi":"10.1002/adma.202513427","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state lithium metal batteries equipped with solid polymer electrolytes (SPEs) are recognized as promising energy storage devices due to their excellent safety and good interfacial contact. However, unstable solid electrolyte interphase (SEI) and sluggish Li<sup>+</sup> transport kinetics inhibit their practical application. Herein, a bromine-modified covalent organic framework (Br-COF) with donor (D)-acceptor (A) characteristics is designed and incorporated into PVDF-HFP-based SPEs to regulate electron density for promoting Li<sup>+</sup> migration and high stability LiF-rich SEI formation to solve these problems. The D and A units of Br-COF are confined in particular locations to create independent electron-hole transference channels, achieving rapid electron transfer dynamics, thereby promoting TFSI<sup>-</sup> decomposition to obtain high LiF content SEI. Meanwhile, the strong electron-withdrawing Br-group can adsorb the electron from tetra(p-amino-phenyl)porphyrin (TAPP) to create an electron-rich environment, resulting in the regulation of the Li<sup>+</sup> local coordination environment to facilitate Li<sup>+</sup> transference. Consequently, Br-COF@PVDF-HFP exhibits high ionic conductivity (9.2 × 10<sup>-4</sup> S cm<sup>-1</sup>) and Li<sup>+</sup> transference number (0.78). Li|Br-COF@PVDF-HFP|Li cells achieve excellent cycling life (3000 h) at 0.1 mA cm<sup>-2</sup>, and LFP|Br-COF@PVDF-HFP|Li and NCM90|Br-COF@PVDF-HFP|Li cells can cycle steadily over 2000 cycles and 250 cycles, respectively. This study provides a reference basis for regulating the electron density of PVDF-HFP-based SPEs to enhance the performance of solid-state LMBs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e13427"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202513427","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state lithium metal batteries equipped with solid polymer electrolytes (SPEs) are recognized as promising energy storage devices due to their excellent safety and good interfacial contact. However, unstable solid electrolyte interphase (SEI) and sluggish Li+ transport kinetics inhibit their practical application. Herein, a bromine-modified covalent organic framework (Br-COF) with donor (D)-acceptor (A) characteristics is designed and incorporated into PVDF-HFP-based SPEs to regulate electron density for promoting Li+ migration and high stability LiF-rich SEI formation to solve these problems. The D and A units of Br-COF are confined in particular locations to create independent electron-hole transference channels, achieving rapid electron transfer dynamics, thereby promoting TFSI- decomposition to obtain high LiF content SEI. Meanwhile, the strong electron-withdrawing Br-group can adsorb the electron from tetra(p-amino-phenyl)porphyrin (TAPP) to create an electron-rich environment, resulting in the regulation of the Li+ local coordination environment to facilitate Li+ transference. Consequently, Br-COF@PVDF-HFP exhibits high ionic conductivity (9.2 × 10-4 S cm-1) and Li+ transference number (0.78). Li|Br-COF@PVDF-HFP|Li cells achieve excellent cycling life (3000 h) at 0.1 mA cm-2, and LFP|Br-COF@PVDF-HFP|Li and NCM90|Br-COF@PVDF-HFP|Li cells can cycle steadily over 2000 cycles and 250 cycles, respectively. This study provides a reference basis for regulating the electron density of PVDF-HFP-based SPEs to enhance the performance of solid-state LMBs.

应用供体-受体COF优化pvdf - hfp基固体聚合物电解质的电子密度,用于高性能固态锂金属电池。
采用固体聚合物电解质(spe)的固态锂金属电池因其优异的安全性和良好的界面接触而被认为是一种有前途的储能装置。然而,不稳定的固体电解质界面(SEI)和缓慢的Li+传输动力学抑制了它们的实际应用。本文设计了一种具有供体(D)-受体(a)特征的溴修饰共价有机骨架(Br-COF),并将其纳入基于pvdf - hfp的spe中,以调节电子密度,促进Li+迁移和高稳定性富锂SEI的形成,以解决这些问题。Br-COF的D和A单元被限制在特定的位置,形成独立的电子-空穴转移通道,实现快速的电子转移动力学,从而促进TFSI-分解,获得高liff含量的SEI。同时,强吸电子的br -基团可以吸附四(对氨基苯基)卟啉(TAPP)上的电子,形成富电子环境,从而调控Li+局部配位环境,促进Li+转移。因此,Br-COF@PVDF-HFP具有较高的离子电导率(9.2 × 10-4 S cm-1)和Li+转移数(0.78)。Li|Br-COF@PVDF-HFP|锂电池在0.1 mA cm-2下具有优异的循环寿命(3000 h),而LFP|Br-COF@PVDF-HFP|Li和NCM90|Br-COF@PVDF-HFP|锂电池分别可以稳定地循环超过2000次和250次。本研究为调控pvdf - hfp基spe的电子密度以提高固态lmb的性能提供了参考依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信