Modulation of photoluminescence in a MoS2 device through tuning the quantum tunneling effect.

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bor-Wei Liang, Ruei-Yu Hsu, Wen-Hao Chang, Ye-Ru Chen, You-Jia Huang, Tilo H Yang, Yu Liang Li, Chin-Yuan Su, Ting-Hua Lu, Yann-Wen Lan
{"title":"Modulation of photoluminescence in a MoS<sub>2</sub> device through tuning the quantum tunneling effect.","authors":"Bor-Wei Liang, Ruei-Yu Hsu, Wen-Hao Chang, Ye-Ru Chen, You-Jia Huang, Tilo H Yang, Yu Liang Li, Chin-Yuan Su, Ting-Hua Lu, Yann-Wen Lan","doi":"10.1039/d5nh00089k","DOIUrl":null,"url":null,"abstract":"<p><p>Transition metal dichalcogenide (TMD) materials, such as molybdenum disulfide (MoS<sub>2</sub>), have emerged as promising platforms for exploring electrically tunable light-matter interactions, which are critical for designing high-performance photodetector systems. In this study, we investigate the advancements in quantum tunneling MoS<sub>2</sub> field-effect transistors (QT-MoS<sub>2</sub> FETs) and their optoelectronic properties, with a focus on photoresponse behavior and photoluminescence (PL) spectral variations driven by photoinduced tunneling currents through oxide layers. The results demonstrate that tunneling-induced exciton and trion dissociation effects lead to a pronounced blue shift in PL spectral peaks and significant changes in light intensity. Compared to normal MoS<sub>2</sub> FETs, QT-MoS<sub>2</sub> FETs exhibit considerably enhanced PL spectral modulation under applied gate bias, underscoring the critical role of tunneling currents in governing optical responses. This work advances the understanding of 2D material-based optoelectronics and highlights their potential for next-generation photodetector applications.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00089k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal dichalcogenide (TMD) materials, such as molybdenum disulfide (MoS2), have emerged as promising platforms for exploring electrically tunable light-matter interactions, which are critical for designing high-performance photodetector systems. In this study, we investigate the advancements in quantum tunneling MoS2 field-effect transistors (QT-MoS2 FETs) and their optoelectronic properties, with a focus on photoresponse behavior and photoluminescence (PL) spectral variations driven by photoinduced tunneling currents through oxide layers. The results demonstrate that tunneling-induced exciton and trion dissociation effects lead to a pronounced blue shift in PL spectral peaks and significant changes in light intensity. Compared to normal MoS2 FETs, QT-MoS2 FETs exhibit considerably enhanced PL spectral modulation under applied gate bias, underscoring the critical role of tunneling currents in governing optical responses. This work advances the understanding of 2D material-based optoelectronics and highlights their potential for next-generation photodetector applications.

通过调谐量子隧道效应调制二硫化钼器件中的光致发光。
过渡金属二硫化物(TMD)材料,如二硫化钼(MoS2),已经成为探索电可调谐光-物质相互作用的有前途的平台,这对于设计高性能光电探测器系统至关重要。在这项研究中,我们研究了量子隧道MoS2场效应晶体管(QT-MoS2 fet)及其光电性能的进展,重点研究了光致隧道电流通过氧化物层驱动的光响应行为和光致发光(PL)光谱变化。结果表明,隧道诱导的激子和三离子解离效应导致了PL光谱峰明显的蓝移和光强的显著变化。与普通MoS2 fet相比,QT-MoS2 fet在外加栅极偏置下表现出显著增强的PL光谱调制,强调了隧道电流在控制光学响应中的关键作用。这项工作促进了对基于二维材料的光电子学的理解,并强调了它们在下一代光电探测器应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信