Trapping nanoscale particles via quasi-Scholte mode in acoustofluidics.

IF 5.4 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-08-28 DOI:10.1039/d5lc00490j
Jiaqi Liu, Yuan Yu, Rujun Zhang, Yanru Chen, Yanlong Guo, Yi Zhang, Ran Tao, Jingting Luo, Hairong Zheng, Pingfa Feng, Yongqing Fu, Jianjian Wang, Feiyan Cai
{"title":"Trapping nanoscale particles <i>via</i> quasi-Scholte mode in acoustofluidics.","authors":"Jiaqi Liu, Yuan Yu, Rujun Zhang, Yanru Chen, Yanlong Guo, Yi Zhang, Ran Tao, Jingting Luo, Hairong Zheng, Pingfa Feng, Yongqing Fu, Jianjian Wang, Feiyan Cai","doi":"10.1039/d5lc00490j","DOIUrl":null,"url":null,"abstract":"<p><p>Non-contact and label-free acoustic manipulation of particles is crucial for various applications ranging from cell separation and tissue engineering to micromachining and nanofabrication. Surface acoustic waves (SAWs) have been widely used for microscale particle manipulation; their leaky nature in liquid often generates significant bulk acoustic streaming that undermines stable trapping of nanoscale particles. To address this challenge, we introduce an acoustofluidic device comprising a zinc oxide (ZnO) thin film deposited on aluminum foil with one-sided water loading. This design excites quasi-Scholte waves, a specialized nonleaky mode confined to the fluid-solid interface, which effectively suppresses bulk streaming and enables stable nanoparticle trapping. Both theoretical modeling and experiments confirm that the resulting strongly evanescent field operated at 5.11 MHz generates negative vertical forces and strong lateral (in-plane) trapping forces, successfully trapping 250 nm-radius particles on the foil surface. As the particle radius decreases to 150 nm, streaming-induced drag becomes the dominant manipulation mechanism. Operable at low frequencies with a simple and scalable design, our platform offers a versatile route for precise nanoscale particle trapping, with significant potential for bioengineering and nanofabrication applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00490j","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Non-contact and label-free acoustic manipulation of particles is crucial for various applications ranging from cell separation and tissue engineering to micromachining and nanofabrication. Surface acoustic waves (SAWs) have been widely used for microscale particle manipulation; their leaky nature in liquid often generates significant bulk acoustic streaming that undermines stable trapping of nanoscale particles. To address this challenge, we introduce an acoustofluidic device comprising a zinc oxide (ZnO) thin film deposited on aluminum foil with one-sided water loading. This design excites quasi-Scholte waves, a specialized nonleaky mode confined to the fluid-solid interface, which effectively suppresses bulk streaming and enables stable nanoparticle trapping. Both theoretical modeling and experiments confirm that the resulting strongly evanescent field operated at 5.11 MHz generates negative vertical forces and strong lateral (in-plane) trapping forces, successfully trapping 250 nm-radius particles on the foil surface. As the particle radius decreases to 150 nm, streaming-induced drag becomes the dominant manipulation mechanism. Operable at low frequencies with a simple and scalable design, our platform offers a versatile route for precise nanoscale particle trapping, with significant potential for bioengineering and nanofabrication applications.

声流体中准scholte模式捕获纳米级粒子。
粒子的非接触和无标签声学操作对于从细胞分离和组织工程到微加工和纳米制造的各种应用至关重要。表面声波(saw)已广泛应用于微尺度的粒子操纵;它们在液体中的泄漏特性通常会产生大量的声流,从而破坏纳米级颗粒的稳定捕获。为了解决这一挑战,我们引入了一种声流控装置,该装置由沉积在铝箔上的氧化锌(ZnO)薄膜组成,具有单向水负载。这种设计激发了准scholte波,这是一种特殊的非泄漏模式,局限于流固界面,有效地抑制了大块流动,实现了稳定的纳米颗粒捕获。理论模型和实验均证实,在5.11 MHz下产生的强倏逝场产生负的垂直力和强的横向(面内)捕获力,成功地在箔表面捕获了半径为250 nm的粒子。当颗粒半径减小到150nm时,流致阻力成为主要的操纵机制。我们的平台可在低频率下操作,设计简单且可扩展,为精确的纳米级粒子捕获提供了一种通用的途径,在生物工程和纳米制造应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信