NiFe-LDH-enhanced Ru single-atom catalysts anchored on MXenes for synergistic photothermal-nanocatalytic cancer therapy.

IF 5.7 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Sharipova Gulnihol, Takhirov Yuldash, Rakhmanov Kosim, Avliyoqulova Musharraf, Lola Abduraximova, Ismailova Zukhra, Ibragimkhodjaev Bakhodir, Kuchkorova Ra'no, Abdullayev Dadaxon, Dilbar Urazbaeva, Sullieva Suluv, Monireh Faraji
{"title":"NiFe-LDH-enhanced Ru single-atom catalysts anchored on MXenes for synergistic photothermal-nanocatalytic cancer therapy.","authors":"Sharipova Gulnihol, Takhirov Yuldash, Rakhmanov Kosim, Avliyoqulova Musharraf, Lola Abduraximova, Ismailova Zukhra, Ibragimkhodjaev Bakhodir, Kuchkorova Ra'no, Abdullayev Dadaxon, Dilbar Urazbaeva, Sullieva Suluv, Monireh Faraji","doi":"10.1039/d5bm01060h","DOIUrl":null,"url":null,"abstract":"<p><p>Single-atom catalysts (SACs) have emerged as revolutionary agents in cancer treatment owing to their optimized atomic efficiency and highly tunable catalytic properties. Nonetheless, their clinical application is hindered by restricted stability, ineffective substrate adsorption, and subpar catalytic rates under physiological conditions. This study presents the rational design of a hybrid Ru single-atom nanozyme, based on a NiFe-layered double hydroxide (LDH) and coupled with an MXene (RuSA/NiFe-LDH-MXene), facilitating synergistic photothermal and catalytic tumor therapy. The NiFe-LDH matrix enables strong coordination with Ru atoms, enhancing their electronic configuration and serving a dual function of electron enrichment and substrate activation, while MXene nanosheets offer high conductivity and photothermal conversion. Our system demonstrates increased peroxidase-like activity, effectively promoting the decomposition of H<sub>2</sub>O<sub>2</sub> and the depletion of glutathione, thus intensifying oxidative stress in tumor microenvironments. Upon NIR irradiation, RuSA/NiFe-LDH-MXene attains a significant temperature increase (∼52.7 °C at 0.5 W cm<sup>-2</sup> for 5 minutes) and has a high photothermal conversion efficiency (∼46.8%). The nanozyme exhibits approximately a 2.8-fold increased catalytic velocity (<i>V</i><sub>max</sub>) for H<sub>2</sub>O<sub>2</sub> breakdown and a roughly 1.6-fold enhanced production of hydroxyl radicals in comparison with RuSA@MXene. <i>In vivo</i> investigations revealed enhanced tumor ablation, with the RuSA/NiFe-LDH-MXene + NIR group attaining a tumor inhibition rate of 91.7% without systemic toxicity. This study emphasizes the essential function of LDH coordination in stabilizing Ru single atoms and adjusting their catalytic microenvironment, thereby creating a solid foundation for advanced nanocatalytic cancer treatments.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm01060h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) have emerged as revolutionary agents in cancer treatment owing to their optimized atomic efficiency and highly tunable catalytic properties. Nonetheless, their clinical application is hindered by restricted stability, ineffective substrate adsorption, and subpar catalytic rates under physiological conditions. This study presents the rational design of a hybrid Ru single-atom nanozyme, based on a NiFe-layered double hydroxide (LDH) and coupled with an MXene (RuSA/NiFe-LDH-MXene), facilitating synergistic photothermal and catalytic tumor therapy. The NiFe-LDH matrix enables strong coordination with Ru atoms, enhancing their electronic configuration and serving a dual function of electron enrichment and substrate activation, while MXene nanosheets offer high conductivity and photothermal conversion. Our system demonstrates increased peroxidase-like activity, effectively promoting the decomposition of H2O2 and the depletion of glutathione, thus intensifying oxidative stress in tumor microenvironments. Upon NIR irradiation, RuSA/NiFe-LDH-MXene attains a significant temperature increase (∼52.7 °C at 0.5 W cm-2 for 5 minutes) and has a high photothermal conversion efficiency (∼46.8%). The nanozyme exhibits approximately a 2.8-fold increased catalytic velocity (Vmax) for H2O2 breakdown and a roughly 1.6-fold enhanced production of hydroxyl radicals in comparison with RuSA@MXene. In vivo investigations revealed enhanced tumor ablation, with the RuSA/NiFe-LDH-MXene + NIR group attaining a tumor inhibition rate of 91.7% without systemic toxicity. This study emphasizes the essential function of LDH coordination in stabilizing Ru single atoms and adjusting their catalytic microenvironment, thereby creating a solid foundation for advanced nanocatalytic cancer treatments.

固载于MXenes上的nife - ldh增强Ru单原子催化剂用于光热-纳米协同癌症治疗。
单原子催化剂(SACs)由于其优化的原子效率和高度可调的催化性能而成为癌症治疗的革命性试剂。然而,在生理条件下,它们的临床应用受到稳定性限制、底物吸附效率低和催化率低的阻碍。本研究提出了一种基于nife层状双氢氧化物(LDH)并偶联MXene (RuSA/ nfe -LDH-MXene)的杂化Ru单原子纳米酶的合理设计,促进了光热协同和催化肿瘤治疗。nfe - ldh基质能够与Ru原子强配位,增强其电子构型,并具有电子富集和底物活化的双重功能,而MXene纳米片具有高导电性和光热转换能力。我们的系统显示出增加的过氧化物酶样活性,有效地促进H2O2的分解和谷胱甘肽的消耗,从而加剧肿瘤微环境中的氧化应激。在近红外照射下,RuSA/ nfe - ldh - mxene获得了显著的温度升高(0.5 W cm-2下52.7°C,持续5分钟),并具有较高的光热转换效率(~ 46.8%)。与RuSA@MXene相比,纳米酶对H2O2分解的催化速度(Vmax)提高了约2.8倍,羟基自由基的产生提高了约1.6倍。体内研究显示肿瘤消融增强,RuSA/ nfe - ldh - mxene + NIR组肿瘤抑制率为91.7%,无全身毒性。本研究强调了LDH配位在稳定Ru单原子和调节其催化微环境中的重要作用,从而为先进的纳米催化癌症治疗奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信