Intelligent understanding of spectra: from structural elucidation to property design

IF 39 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuo Feng, Meng Huang, Yanbo Li, Aoran Cai, Xiaoyu Yue, Song Wang, Linjiang Chen, Jun Jiang and Yi Luo
{"title":"Intelligent understanding of spectra: from structural elucidation to property design","authors":"Shuo Feng, Meng Huang, Yanbo Li, Aoran Cai, Xiaoyu Yue, Song Wang, Linjiang Chen, Jun Jiang and Yi Luo","doi":"10.1039/D4CS01293C","DOIUrl":null,"url":null,"abstract":"<p >Spectroscopy serves as a bridge between experimental observations and quantum mechanical principles, linking molecular microstructure to macroscopic material properties. Despite its central importance, establishing quantitative structure–property relationships from spectral data remains challenging, typically requiring expensive quantum chemistry calculations and specialized expertise. The integration of artificial intelligence (AI) with spectroscopy presents a transformative opportunity to overcome these limitations. AI models can leverage spectral data as molecular descriptors to construct predictive relationships—both spectrum-to-structure and spectrum-to-property mappings. This review presents representative advances at the AI–spectroscopy intersection, highlighting how these approaches address challenges in spectroscopic analysis: automated spectral interpretation, efficient spectral prediction, and accurate property determination from spectroscopic fingerprints. Beyond individual applications, we demonstrate how AI enables the development of unified spectrum–structure–property frameworks capable of predicting functional properties directly from spectral data. This integrated approach opens pathways for spectrum-guided, AI-driven inverse design of functional matters. In addition, we emphasize the importance of model interpretability, which can illuminate the fundamental physics underlying spectrum–structure–property relationships. Looking forward, we propose that integrating large-scale AI architectures with spectroscopic descriptors could establish universal spectrum–structure–property relationships, potentially revolutionizing chemical theory.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 18","pages":" 8243-8286"},"PeriodicalIF":39.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cs/d4cs01293c","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spectroscopy serves as a bridge between experimental observations and quantum mechanical principles, linking molecular microstructure to macroscopic material properties. Despite its central importance, establishing quantitative structure–property relationships from spectral data remains challenging, typically requiring expensive quantum chemistry calculations and specialized expertise. The integration of artificial intelligence (AI) with spectroscopy presents a transformative opportunity to overcome these limitations. AI models can leverage spectral data as molecular descriptors to construct predictive relationships—both spectrum-to-structure and spectrum-to-property mappings. This review presents representative advances at the AI–spectroscopy intersection, highlighting how these approaches address challenges in spectroscopic analysis: automated spectral interpretation, efficient spectral prediction, and accurate property determination from spectroscopic fingerprints. Beyond individual applications, we demonstrate how AI enables the development of unified spectrum–structure–property frameworks capable of predicting functional properties directly from spectral data. This integrated approach opens pathways for spectrum-guided, AI-driven inverse design of functional matters. In addition, we emphasize the importance of model interpretability, which can illuminate the fundamental physics underlying spectrum–structure–property relationships. Looking forward, we propose that integrating large-scale AI architectures with spectroscopic descriptors could establish universal spectrum–structure–property relationships, potentially revolutionizing chemical theory.

Abstract Image

光谱的智能理解:从结构阐明到特性设计。
光谱学是实验观察和量子力学原理之间的桥梁,将分子微观结构与宏观材料特性联系起来。尽管它具有核心重要性,但从光谱数据中建立定量的结构-性质关系仍然具有挑战性,通常需要昂贵的量子化学计算和专业知识。人工智能(AI)与光谱学的结合为克服这些限制提供了一个变革性的机会。人工智能模型可以利用光谱数据作为分子描述符来构建预测关系,包括光谱到结构和光谱到属性的映射。本文介绍了人工智能光谱交叉领域的代表性进展,重点介绍了这些方法如何解决光谱分析中的挑战:自动光谱解释、高效光谱预测和从光谱指纹中准确确定属性。除了单个应用之外,我们还展示了人工智能如何能够开发统一的光谱-结构-属性框架,从而能够直接从光谱数据中预测功能属性。这种综合方法为频谱引导、人工智能驱动的功能问题逆向设计开辟了途径。此外,我们强调了模型可解释性的重要性,它可以阐明谱-结构-性质关系背后的基本物理。展望未来,我们建议将大规模人工智能架构与光谱描述符相结合,可以建立通用的光谱-结构-性质关系,可能会彻底改变化学理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信