Dissolving microdroplet electroanalysis enables attomolar-level detection

IF 3.3 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Analyst Pub Date : 2025-08-19 DOI:10.1039/D5AN00795J
James H. Nguyen, Ashutosh Rana, Savannah M. Hatch and Jeffrey E. Dick
{"title":"Dissolving microdroplet electroanalysis enables attomolar-level detection","authors":"James H. Nguyen, Ashutosh Rana, Savannah M. Hatch and Jeffrey E. Dick","doi":"10.1039/D5AN00795J","DOIUrl":null,"url":null,"abstract":"<p >Trace detection is critical for identifying chemicals that would otherwise remain undetectable. While analytical techniques, such as spectroscopy, spectrometry, and electrochemical sensors, are effective at detecting low concentrations, achieving attomolar sensitivity remains a significant challenge. Here, we present an electroanalytical approach that leverages partitioning kinetics to detect attomolar concentrations of redox-active analytes. Using (Cp*)<small><sub>2</sub></small>Fe<small><sup>II</sup></small> as a model system, we demonstrate trace-level detection by facilitating the transfer of (Cp*)<small><sub>2</sub></small>Fe<small><sup>II</sup></small> from the bulk aqueous phase into 1,2-dichloroethane (DCE) microdroplets positioned atop a gold microelectrode (radius ∼6.25 μm). This partitioning arises from the greater solubility of (Cp*)<small><sub>2</sub></small>Fe<small><sup>II</sup></small> in DCE relative to its limited solubility in water, enriching the analyte concentration near the electrode as the microdroplets slowly dissolve into the aqueous phase. Additionally, we explored the role of oxygen in enhancing the electrochemical response: oxygen removal hindered detection at 1 aM, while oxygen saturation significantly amplified the redox peak signal. These findings underscore oxygen's role, which is likely a bimolecular reaction between oxygen and (Cp*)<small><sub>2</sub></small>Fe<small><sup>II</sup></small> in signal amplification. An EC’ catalytic mechanism likely amplifies the electrochemical signal of (Cp*)<small><sub>2</sub></small>Fe<small><sup>II</sup></small> when the droplet is sufficiently small for feedback to occur, enabling attomolar detection of (Cp*)<small><sub>2</sub></small>Fe<small><sup>II</sup></small>. This study introduces a partitioning-based electroanalytical strategy taking advantage of an an EC’ catalytic mechanism for ultra-low detection limits, offering promising applications in trace chemical analysis and advanced sensor technologies.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 19","pages":" 4285-4292"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/an/d5an00795j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Trace detection is critical for identifying chemicals that would otherwise remain undetectable. While analytical techniques, such as spectroscopy, spectrometry, and electrochemical sensors, are effective at detecting low concentrations, achieving attomolar sensitivity remains a significant challenge. Here, we present an electroanalytical approach that leverages partitioning kinetics to detect attomolar concentrations of redox-active analytes. Using (Cp*)2FeII as a model system, we demonstrate trace-level detection by facilitating the transfer of (Cp*)2FeII from the bulk aqueous phase into 1,2-dichloroethane (DCE) microdroplets positioned atop a gold microelectrode (radius ∼6.25 μm). This partitioning arises from the greater solubility of (Cp*)2FeII in DCE relative to its limited solubility in water, enriching the analyte concentration near the electrode as the microdroplets slowly dissolve into the aqueous phase. Additionally, we explored the role of oxygen in enhancing the electrochemical response: oxygen removal hindered detection at 1 aM, while oxygen saturation significantly amplified the redox peak signal. These findings underscore oxygen's role, which is likely a bimolecular reaction between oxygen and (Cp*)2FeII in signal amplification. An EC’ catalytic mechanism likely amplifies the electrochemical signal of (Cp*)2FeII when the droplet is sufficiently small for feedback to occur, enabling attomolar detection of (Cp*)2FeII. This study introduces a partitioning-based electroanalytical strategy taking advantage of an an EC’ catalytic mechanism for ultra-low detection limits, offering promising applications in trace chemical analysis and advanced sensor technologies.

Abstract Image

溶解微滴电分析可以实现原子摩尔级的检测。
痕量检测对于识别否则无法检测到的化学物质至关重要。虽然分析技术,如光谱学、光谱法和电化学传感器,在检测低浓度时是有效的,但实现原子摩尔灵敏度仍然是一个重大挑战。在这里,我们提出了一种电分析方法,利用分配动力学来检测氧化还原活性分析物的原子摩尔浓度。使用(Cp*)2FeII作为模型系统,我们演示了通过促进(Cp*)2FeII从体水相转移到位于金微电极(半径约6.25 μm)顶部的1,2-二氯乙烷(DCE)微滴的痕量水平检测。这种分配是由于(Cp*)2FeII在DCE中的溶解度相对于其在水中的有限溶解度更高,当微滴缓慢溶解到水相中时,电极附近的分析物浓度增加。此外,我们探索了氧在增强电化学响应中的作用:氧去除阻碍了1 aM时的检测,而氧饱和显著放大了氧化还原峰信号。这些发现强调了氧在信号放大中的作用,这可能是氧和(Cp*)2FeII之间的双分子反应。当液滴足够小以产生反馈时,EC的催化机制可能会放大(Cp*)2FeII的电化学信号,从而实现(Cp*)2FeII的原子摩尔检测。本研究介绍了一种基于分区的电分析策略,该策略利用了EC的超低检测限催化机制,在痕量化学分析和先进的传感器技术中提供了有前途的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信