Phoebe H. Fechtmeyer, Cameron Martinez and Johannes T.-H. Yeh*,
{"title":"Temporal and Spatial Characterization of CUL3KLHL20-Driven Targeted Degradation of BET Family BRD Proteins by the Macrocycle-Based Degrader BTR2004","authors":"Phoebe H. Fechtmeyer, Cameron Martinez and Johannes T.-H. Yeh*, ","doi":"10.1021/acschembio.5c00343","DOIUrl":null,"url":null,"abstract":"<p >Targeted protein degradation (TPD) is a promising modality that leverages the endogenous cellular protein degradation machinery to degrade selected proteins. Recently, we validated CUL3<sup>KLHL20</sup> E3 ligase as a new actionable E3 ligase for TPD application by developing a synthetic macrocycle ligand to engage KLHL20. Linking the KLHL20 ligand to JQ1, we created the PROTAC molecule BTR2004, which exhibited potent degradation of BET family proteins BRD 2, 3, and 4. As CUL3<sup>KLHL20</sup> is new to the TPD field, here we report the first temporal and spatial characterization of CUL3<sup>KLHL20</sup>-driven TPD with BTR2004. Our study revealed the target protein degradation kinetics, BTR2004 intracellular activity half-life, and the onset of BTR2004 cell permeabilization. Employing proximity ligation and confocal microscopy techniques, we also illustrate the subcellular location of the ternary complex assembly upon BTR2004 treatment. These characterizations provide further insight into the processes that govern TPD and features that could be incorporated into the design of future macrocyclic PROTAC molecules.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"20 9","pages":"2056–2062"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschembio.5c00343","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted protein degradation (TPD) is a promising modality that leverages the endogenous cellular protein degradation machinery to degrade selected proteins. Recently, we validated CUL3KLHL20 E3 ligase as a new actionable E3 ligase for TPD application by developing a synthetic macrocycle ligand to engage KLHL20. Linking the KLHL20 ligand to JQ1, we created the PROTAC molecule BTR2004, which exhibited potent degradation of BET family proteins BRD 2, 3, and 4. As CUL3KLHL20 is new to the TPD field, here we report the first temporal and spatial characterization of CUL3KLHL20-driven TPD with BTR2004. Our study revealed the target protein degradation kinetics, BTR2004 intracellular activity half-life, and the onset of BTR2004 cell permeabilization. Employing proximity ligation and confocal microscopy techniques, we also illustrate the subcellular location of the ternary complex assembly upon BTR2004 treatment. These characterizations provide further insight into the processes that govern TPD and features that could be incorporated into the design of future macrocyclic PROTAC molecules.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.