First-Principles Insights into the Role of Coordination Polyhedron Size on Mn Ion Migration within Li2-xMnO3 Layered Cathode Material

IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY
Huiying Zhang, Dongsen Wu, Fanghua Ning, Yiming Guo, Jingwen Dai, Zhuo Sun, Xiaoyu Liu, Shigang Lu, Jin Yi
{"title":"First-Principles Insights into the Role of Coordination Polyhedron Size on Mn Ion Migration within Li2-xMnO3 Layered Cathode Material","authors":"Huiying Zhang,&nbsp;Dongsen Wu,&nbsp;Fanghua Ning,&nbsp;Yiming Guo,&nbsp;Jingwen Dai,&nbsp;Zhuo Sun,&nbsp;Xiaoyu Liu,&nbsp;Shigang Lu,&nbsp;Jin Yi","doi":"10.1002/batt.202500044","DOIUrl":null,"url":null,"abstract":"<p>Li-rich cathode materials are promising cathode materials for lithium-ion batteries. However, the Mn ion migration in Li-rich cathode materials during charge–discharge cycles significantly impedes their practical application. In this study, a systematical investigation has been carried out to reveal the Mn ion migration mechanisms in Li<sub>2</sub><sub>-<i>x</i></sub>MnO<sub>3</sub> by using first-principles calculations. It is found that the Mn migration energy increases with increasing Li<sup>+</sup> extraction from Li<sub>2</sub>MnO<sub>3</sub>. Conversely, the Li<sub>Mn</sub> anti-site formation energy declines with the extraction of more Li<sup>+</sup> from Li<sub>2</sub>MnO<sub>3</sub>. The migration energy decreases under the tensile strain along the c- and b-axes. Further investigations reveal that the Mn ion migration energy is determined by MnO<sub>6</sub> coordination polyhedron. Specifically, a larger MnO<sub>6</sub> coordination polyhedron volume would result in lower migration energy, highlighting the coordination polyhedron size as a pivotal factor in the suppression of Mn ion migration. This study offers an in-depth understanding of transition metal ion migration phenomena, providing theoretical guidance for devising strategies to mitigate Mn migration in Li-rich materials.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202500044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Li-rich cathode materials are promising cathode materials for lithium-ion batteries. However, the Mn ion migration in Li-rich cathode materials during charge–discharge cycles significantly impedes their practical application. In this study, a systematical investigation has been carried out to reveal the Mn ion migration mechanisms in Li2-xMnO3 by using first-principles calculations. It is found that the Mn migration energy increases with increasing Li+ extraction from Li2MnO3. Conversely, the LiMn anti-site formation energy declines with the extraction of more Li+ from Li2MnO3. The migration energy decreases under the tensile strain along the c- and b-axes. Further investigations reveal that the Mn ion migration energy is determined by MnO6 coordination polyhedron. Specifically, a larger MnO6 coordination polyhedron volume would result in lower migration energy, highlighting the coordination polyhedron size as a pivotal factor in the suppression of Mn ion migration. This study offers an in-depth understanding of transition metal ion migration phenomena, providing theoretical guidance for devising strategies to mitigate Mn migration in Li-rich materials.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

配位多面体尺寸对Li2-xMnO3层状正极材料中Mn离子迁移作用的第一性原理研究
富锂正极材料是锂离子电池极具发展前景的正极材料。然而,在充放电循环过程中,锰离子在富锂阴极材料中的迁移极大地阻碍了它们的实际应用。本研究采用第一性原理计算方法,系统研究了锰离子在Li2-xMnO3中的迁移机制。结果表明,随着Li2MnO3中Li+萃取量的增加,Mn迁移能增加。相反,随着从Li2MnO3中提取更多的Li+, LiMn反位形成能下降。在拉伸应变作用下,沿c轴和b轴的迁移能减小。进一步的研究表明Mn离子的迁移能是由MnO6配位多面体决定的。具体来说,MnO6配位多面体体积越大,迁移能越低,这表明配位多面体尺寸是抑制Mn离子迁移的关键因素。本研究提供了对过渡金属离子迁移现象的深入理解,为设计减轻锰在富锂材料中迁移的策略提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信