Revolutionizing Forecasting with Deep Data Assimilation for Lorenz-63 Model

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Prashant Kumar, Pathik Patel, A. K. Varma
{"title":"Revolutionizing Forecasting with Deep Data Assimilation for Lorenz-63 Model","authors":"Prashant Kumar,&nbsp;Pathik Patel,&nbsp;A. K. Varma","doi":"10.1007/s00024-025-03769-0","DOIUrl":null,"url":null,"abstract":"<div><p>Earth science has embraced the application of deep learning (DL) across various fields. The research aimed to enhance the Analog Data Assimilation (AnDA) approach by integrating a DL technique. This involved using a representative catalog of the dynamical model to rebuild the system dynamics. The outcome of this was the development of the Deep Data Assimilation (DeepDA) technique, which uses ensemble-based assimilation methods like the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) along with DL to model system dynamics. To achieve this, an artificial recurrent neural network with a long short-term memory (LSTM) architecture was utilized for data-driven forecasting. To assess the effectiveness of DeepDA as compared to the AnDA model-driven assimilation methods, a series of numerical experiments were conducted using the chaotic dynamical model Lorenz-63. The results demonstrated that DeepDA exhibits highly efficient computational capabilities and satisfactory prediction accuracy and skills compared to AnDA. </p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 8","pages":"3205 - 3217"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-025-03769-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Earth science has embraced the application of deep learning (DL) across various fields. The research aimed to enhance the Analog Data Assimilation (AnDA) approach by integrating a DL technique. This involved using a representative catalog of the dynamical model to rebuild the system dynamics. The outcome of this was the development of the Deep Data Assimilation (DeepDA) technique, which uses ensemble-based assimilation methods like the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) along with DL to model system dynamics. To achieve this, an artificial recurrent neural network with a long short-term memory (LSTM) architecture was utilized for data-driven forecasting. To assess the effectiveness of DeepDA as compared to the AnDA model-driven assimilation methods, a series of numerical experiments were conducted using the chaotic dynamical model Lorenz-63. The results demonstrated that DeepDA exhibits highly efficient computational capabilities and satisfactory prediction accuracy and skills compared to AnDA.

Lorenz-63模型深度数据同化的革命性预测
地球科学已经接受了深度学习(DL)在各个领域的应用。该研究旨在通过集成DL技术来增强模拟数据同化(AnDA)方法。这涉及到使用动态模型的代表性目录来重建系统动力学。其结果是深度数据同化(DeepDA)技术的发展,该技术使用基于集成的同化方法,如集成卡尔曼滤波(EnKF)和粒子滤波(PF)以及深度学习来模拟系统动力学。为此,利用具有长短期记忆(LSTM)结构的人工递归神经网络进行数据驱动预测。为了评估DeepDA与AnDA模型驱动同化方法相比的有效性,采用混沌动力学模型Lorenz-63进行了一系列数值实验。结果表明,与AnDA相比,DeepDA具有高效的计算能力和令人满意的预测精度和技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信