{"title":"Prediction of Future Drought Characteristics Over the Southwest Turkey Using CMIP6 Models","authors":"Erhan Şener, Ayşen Davraz","doi":"10.1007/s00024-025-03757-4","DOIUrl":null,"url":null,"abstract":"<div><p>The impacts of climate change on precipitation and drought are of great importance for agriculture, water resources and ecosystems. The CMIP6 models developed by the Intergovernmental Panel on Climate Change (IPCC) within the scope of the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulate future climate conditions under various climate scenarios and provide a better understanding of possible changes at regional and global levels. In this study, 4 different CMIP6 models, namely CANESM5, EC-EARTH3, MIROC6 and MRI-ESM2, were used to model future precipitation and temperature data in Isparta region located in the Lakes Region. Six different optimistic and pessimistic Shared Socioeconomic Pathway (SSP) scenarios, namely SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and SSP5-8.5, were considered in the modelling phase. In the projections made until 2100, it is predicted that in optimistic and pessimistic scenarios, temperature increases may reach up to 2.84 °C, 3.3 °C, 4.06 °C, 5.18 °C, 4.77 °C and 5.78 °C, respectively, and precipitation may decrease by approximately 14.9%. In addition, the results obtained from drought analyses using the Standardized Precipitation Index (SPI) show that the severity and duration of current droughts will increase significantly in the future due to decreases in precipitation and increases in temperatures in the coming years. In Isparta, which is located in the Lakes Region, a region vulnerable to drought, it is very important to develop drought management strategies in order to minimize the effects of severe droughts that may occur in the future.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 8","pages":"3311 - 3338"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-025-03757-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-025-03757-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The impacts of climate change on precipitation and drought are of great importance for agriculture, water resources and ecosystems. The CMIP6 models developed by the Intergovernmental Panel on Climate Change (IPCC) within the scope of the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulate future climate conditions under various climate scenarios and provide a better understanding of possible changes at regional and global levels. In this study, 4 different CMIP6 models, namely CANESM5, EC-EARTH3, MIROC6 and MRI-ESM2, were used to model future precipitation and temperature data in Isparta region located in the Lakes Region. Six different optimistic and pessimistic Shared Socioeconomic Pathway (SSP) scenarios, namely SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and SSP5-8.5, were considered in the modelling phase. In the projections made until 2100, it is predicted that in optimistic and pessimistic scenarios, temperature increases may reach up to 2.84 °C, 3.3 °C, 4.06 °C, 5.18 °C, 4.77 °C and 5.78 °C, respectively, and precipitation may decrease by approximately 14.9%. In addition, the results obtained from drought analyses using the Standardized Precipitation Index (SPI) show that the severity and duration of current droughts will increase significantly in the future due to decreases in precipitation and increases in temperatures in the coming years. In Isparta, which is located in the Lakes Region, a region vulnerable to drought, it is very important to develop drought management strategies in order to minimize the effects of severe droughts that may occur in the future.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.