Singular Spectrum Analysis for Noise Reduction and Feature Extraction in Hybrid Deep Learning Models: Integrating Meteorological Variables for Improved SGI Predictions
{"title":"Singular Spectrum Analysis for Noise Reduction and Feature Extraction in Hybrid Deep Learning Models: Integrating Meteorological Variables for Improved SGI Predictions","authors":"Erdal Koç, Okan Mert Katipoğlu","doi":"10.1007/s00024-025-03764-5","DOIUrl":null,"url":null,"abstract":"<div><p>Within the scope of this study, a range of advanced machine learning and deep learning models—including Singular Spectrum Analysis (SSA), Adaptive Neuro-Fuzzy Inference System (ANFIS), Categorical Boosting (CatBoost), Convolutional Neural Network (CNN), Deep Autoencoder, Deep Neural Network (DNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM)—were employed to estimate the Standardized Groundwater Index (SGI) in Erzincan Province. SSA was utilized as a preprocessing technique to decompose input variables such as precipitation, relative humidity, temperature, and past SGI values into distinct components including trend, seasonality, cyclicality, and noise. These decomposed components were then fed into the artificial intelligence models to construct hybrid forecasting frameworks. The performance of each hybrid model was evaluated using multiple statistical indicators and visual analyses. The findings demonstrated that incorporating all SSA-derived subcomponents as inputs generally improved the monthly SGI prediction accuracy. However, for 12-month SGI predictions, the results were more variable, with both improvements and deteriorations observed depending on the model configuration. Additionally, the elimination of noise components was found to enhance both model generalization capability and overall prediction performance. Among the models tested, ANFIS emerged as the most effective in capturing GWD dynamics. To further investigate variable importance, Sobol sensitivity analysis was applied to the ANFIS outputs. The analysis revealed that previous SGI-1 values (t − 1) and relative humidity were the most influential inputs in predicting current SGI-1 (t) values.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 8","pages":"3219 - 3254"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00024-025-03764-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-025-03764-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Within the scope of this study, a range of advanced machine learning and deep learning models—including Singular Spectrum Analysis (SSA), Adaptive Neuro-Fuzzy Inference System (ANFIS), Categorical Boosting (CatBoost), Convolutional Neural Network (CNN), Deep Autoencoder, Deep Neural Network (DNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM)—were employed to estimate the Standardized Groundwater Index (SGI) in Erzincan Province. SSA was utilized as a preprocessing technique to decompose input variables such as precipitation, relative humidity, temperature, and past SGI values into distinct components including trend, seasonality, cyclicality, and noise. These decomposed components were then fed into the artificial intelligence models to construct hybrid forecasting frameworks. The performance of each hybrid model was evaluated using multiple statistical indicators and visual analyses. The findings demonstrated that incorporating all SSA-derived subcomponents as inputs generally improved the monthly SGI prediction accuracy. However, for 12-month SGI predictions, the results were more variable, with both improvements and deteriorations observed depending on the model configuration. Additionally, the elimination of noise components was found to enhance both model generalization capability and overall prediction performance. Among the models tested, ANFIS emerged as the most effective in capturing GWD dynamics. To further investigate variable importance, Sobol sensitivity analysis was applied to the ANFIS outputs. The analysis revealed that previous SGI-1 values (t − 1) and relative humidity were the most influential inputs in predicting current SGI-1 (t) values.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.