{"title":"Synthesis of three-dimensional nitrogen-doped reduced graphene oxide catalyst with high activity in acidic","authors":"Min Cong Wu, Yue Yao, Xin Zhang","doi":"10.1186/s11671-025-04348-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we synthesized a novel three-dimensional nitrogen-doped reduced graphene oxide (3D-NRGO) by integrating a sulfonated polystyrene (PSS) template method with nitrogen doping. The resulting 3D-NRGO was applied as an electrocatalyst for the oxygen reduction reaction (ORR) in acidic electrolyte. Owing to the synergistic effect arising from its three-dimensional structure and nitrogen doping, the catalyst demonstrates substantially augmented catalytic current density, a more positive ORR potential, excellent methanol tolerance, and prolonged operational stability. XPS and EDS characterization coupled with complementary analyses established that graphitic-N constitutes the paramount nitrogen species governing ORR activity in acidic media.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04348-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04348-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we synthesized a novel three-dimensional nitrogen-doped reduced graphene oxide (3D-NRGO) by integrating a sulfonated polystyrene (PSS) template method with nitrogen doping. The resulting 3D-NRGO was applied as an electrocatalyst for the oxygen reduction reaction (ORR) in acidic electrolyte. Owing to the synergistic effect arising from its three-dimensional structure and nitrogen doping, the catalyst demonstrates substantially augmented catalytic current density, a more positive ORR potential, excellent methanol tolerance, and prolonged operational stability. XPS and EDS characterization coupled with complementary analyses established that graphitic-N constitutes the paramount nitrogen species governing ORR activity in acidic media.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.