Learning Weakly Monotone Operators for Convergent Plug-and-Play PET Reconstruction

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Marion Savanier;Claude Comtat;Florent Sureau
{"title":"Learning Weakly Monotone Operators for Convergent Plug-and-Play PET Reconstruction","authors":"Marion Savanier;Claude Comtat;Florent Sureau","doi":"10.1109/LSP.2025.3598700","DOIUrl":null,"url":null,"abstract":"This letter extends the capabilities of Plug-and-Play ADMM, a popular algorithm for solving inverse problems while leveraging deep learning priors. Convergence results on PnP ADMM often rely on the Douglas-Rachford (DR) splitting method and require a firmly nonexpansive constraint on the plugged network. Common convolutional architectures do not inherently verify this constraint, and many works are now trying to circumvent it. Building on recent advancements in the DR method for handling weakly monotone operators, we propose a modification of PnP ADMM for low-count Positron Emission Tomography reconstruction, allowing for networks trained on reconstruction-specific tasks with a more general averageness constraint. Our numerical experiments on simulated brain data demonstrate that this flexibility simplifies training and improves reconstruction quality.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3405-3409"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11123756/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter extends the capabilities of Plug-and-Play ADMM, a popular algorithm for solving inverse problems while leveraging deep learning priors. Convergence results on PnP ADMM often rely on the Douglas-Rachford (DR) splitting method and require a firmly nonexpansive constraint on the plugged network. Common convolutional architectures do not inherently verify this constraint, and many works are now trying to circumvent it. Building on recent advancements in the DR method for handling weakly monotone operators, we propose a modification of PnP ADMM for low-count Positron Emission Tomography reconstruction, allowing for networks trained on reconstruction-specific tasks with a more general averageness constraint. Our numerical experiments on simulated brain data demonstrate that this flexibility simplifies training and improves reconstruction quality.
收敛即插即用PET重构的弱单调算子学习
这封信扩展了即插即用ADMM的功能,即插即用ADMM是一种流行的算法,用于解决逆问题,同时利用深度学习先验。PnP ADMM的收敛结果通常依赖于Douglas-Rachford (DR)分裂方法,并且需要在插入网络上具有牢固的非扩张约束。常见的卷积架构本身并不验证这一约束,现在许多工作都在试图绕过它。基于处理弱单调算子的DR方法的最新进展,我们提出了一种用于低计数正电子发射断层扫描重建的PnP ADMM的修改,允许在具有更一般平均约束的重建特定任务上训练网络。我们在模拟大脑数据上的数值实验表明,这种灵活性简化了训练,提高了重建质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信