Properties of Edge Plasma and Peripheral Transport in Quasi-Stationary L-2 and L-2M Stellarators

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, FLUIDS & PLASMAS
D. G. Vasil’kov, N. K. Kharchev
{"title":"Properties of Edge Plasma and Peripheral Transport in Quasi-Stationary L-2 and L-2M Stellarators","authors":"D. G. Vasil’kov,&nbsp;N. K. Kharchev","doi":"10.1134/S1063780X25602615","DOIUrl":null,"url":null,"abstract":"<p>Studies of plasma produced and confined in quasi-stationary L-2 and L-2M stellarators are presented. In these facilities, plasma was produced by the non-inductive electron cyclotron resonance (ECR) microwave heating in the power range of <i>P</i> = 0.05–1 MW. The radial structure of the near-separatrix region (the relative radius of 0.8–1) and fluctuations of plasma parameters in the mode without changing macroparameters are considered. Fluctuations of the near-wall plasma parameters—density, electric potential, and magnetic field—and their evolution during discharges are analyzed. The structure of the electric field and heat flux in the near-wall plasma measured by Langmuir probes is analyzed. The relation between changes in fluctuating plasma parameters and possible small-scale instabilities is analyzed. The mechanisms of the development of permutation, peeling and temperature gradient edge instabilities are considered. A comparison is made between the simulation of the energy transfer in plasma using neoclassical models taking into account anomalous energy losses and that based on canonical pressure profiles. The possibility of using a quasi-stationary stellarator as a source of plasma flows with three-dimensional geometry for materials science is considered.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"51 5","pages":"513 - 527"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X25602615","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Studies of plasma produced and confined in quasi-stationary L-2 and L-2M stellarators are presented. In these facilities, plasma was produced by the non-inductive electron cyclotron resonance (ECR) microwave heating in the power range of P = 0.05–1 MW. The radial structure of the near-separatrix region (the relative radius of 0.8–1) and fluctuations of plasma parameters in the mode without changing macroparameters are considered. Fluctuations of the near-wall plasma parameters—density, electric potential, and magnetic field—and their evolution during discharges are analyzed. The structure of the electric field and heat flux in the near-wall plasma measured by Langmuir probes is analyzed. The relation between changes in fluctuating plasma parameters and possible small-scale instabilities is analyzed. The mechanisms of the development of permutation, peeling and temperature gradient edge instabilities are considered. A comparison is made between the simulation of the energy transfer in plasma using neoclassical models taking into account anomalous energy losses and that based on canonical pressure profiles. The possibility of using a quasi-stationary stellarator as a source of plasma flows with three-dimensional geometry for materials science is considered.

Abstract Image

Abstract Image

准稳态L-2和L-2M仿星器中边缘等离子体和外围输运的性质
介绍了在准静止的L-2和L-2M仿星器中产生和限制的等离子体的研究。在这些装置中,用无感电子回旋共振(ECR)微波加热产生等离子体,功率范围为P = 0.05-1 MW。考虑了近分离矩阵区域的径向结构(相对半径为0.8-1)和等离子体参数在不改变宏观参数的模式下的波动。分析了近壁等离子体参数密度、电势和磁场的波动及其在放电过程中的演变。分析了用朗缪尔探针测量近壁等离子体的电场结构和热流场。分析了脉动等离子体参数的变化与可能的小尺度不稳定性之间的关系。讨论了排列、剥落和温度梯度边缘不稳定性的形成机制。比较了考虑异常能量损失的新古典模型和基于正则压力分布的模型对等离子体中能量传递的模拟。考虑了准静止仿星器作为材料科学三维几何等离子体流源的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Physics Reports
Plasma Physics Reports 物理-物理:流体与等离子体
CiteScore
1.90
自引率
36.40%
发文量
104
审稿时长
4-8 weeks
期刊介绍: Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信