Logarithmic connections on principal bundles over normal varieties

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Jyoti Dasgupta , Bivas Khan , Mainak Poddar
{"title":"Logarithmic connections on principal bundles over normal varieties","authors":"Jyoti Dasgupta ,&nbsp;Bivas Khan ,&nbsp;Mainak Poddar","doi":"10.1016/j.bulsci.2025.103715","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>X</em> be a normal projective variety over an algebraically closed field of characteristic zero. Let <em>D</em> be a reduced Weil divisor on <em>X</em>. Let <em>G</em> be a reductive linear algebraic group. We study logarithmic connections on a principal <em>G</em>-bundle over <em>X</em>, which are singular along <em>D</em>. We give necessary and sufficient conditions for the existence of such a connection in terms of connections on associated vector bundles when the logarithmic tangent sheaf of <em>X</em> is locally free. The existence of a logarithmic connection on a principal bundle over a projective toric variety, singular along the boundary divisor, is shown to be equivalent to the existence of a torus equivariant structure on the bundle.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103715"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001411","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a normal projective variety over an algebraically closed field of characteristic zero. Let D be a reduced Weil divisor on X. Let G be a reductive linear algebraic group. We study logarithmic connections on a principal G-bundle over X, which are singular along D. We give necessary and sufficient conditions for the existence of such a connection in terms of connections on associated vector bundles when the logarithmic tangent sheaf of X is locally free. The existence of a logarithmic connection on a principal bundle over a projective toric variety, singular along the boundary divisor, is shown to be equivalent to the existence of a torus equivariant structure on the bundle.
正态变种上主束的对数连接
设X是特征为零的代数闭域上的正规射影变。设D是x上的约简Weil因子,设G是一个约简线性代数群。研究了X上主g束上沿d方向奇异的对数连接,给出了当X的对数切线束局部自由时,相关向量束上的对数连接存在的充分必要条件。证明了沿边界除数奇异的射影环变簇上主束上的对数连接的存在性等价于该束上环面等变结构的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信